The Diffusion Equation:

The analogous prod em for the diffusion eq. is:

$$
\left\{\begin{array}{lc}
u_{t}(x, t)=k u_{x x}(x, t) & 0<x<l \quad t>0 \\
u(0, t)=u(l, t)=0 & t \geq 0 \\
u(x, 0)=\phi(x) & 0<x<l
\end{array}\right.
$$

Following the same procedure, we make the ansate:

$$
u(x, t)=X(x) T(t)
$$

This leads to: $\quad X(x) T^{\prime}(t)=k X^{\prime \prime}(x) T(t)$.
Dividing by $k X T$ we get

$$
-\frac{T^{\prime}}{k T}=-\frac{x^{\prime \prime}}{x}=\lambda
$$

as before (where we Lave inserted a - sigh since we anticipate λ to be positive).
Notice that the temporal part only has a T^{\prime}, not $T "$: this is going to be crucial!

X put: OAs before, we have $-X^{\prime \prime}(x)=\lambda X(x)$ with the boundary conditions $X(0)=X(l)=0$. Exactly as before, we get multiples of $\sin \left(\frac{n \pi}{l} x\right)$.

T part: The Tpart is: $T^{\prime}(t)=-\lambda k T(t)$.
The geveralsolution is $T(t)=A e^{-\lambda k t}$
The X part requires elsonete values: $\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}$ as before.

So we find the sequence of solutions:

$$
w_{n}(x, t)=A_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \sin \left(\frac{n \pi}{l} x\right)
$$

And the general solution is any (finite) sum:

$$
u(x, t)=\sum_{n} A_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \sin \left(\frac{n \pi}{l} x\right)
$$

and to satisfy the initial condition we reed:

$$
\phi(x)=u(x, 0)=\sum_{n} A_{n} e^{-0} \sin \left(\frac{n \pi}{l} x\right)=\sum_{n} A_{n} \sin \left(\frac{n \pi}{l} x\right)
$$

Comparing temporal behavior:
The temporal parts of the solutions contain:

- $A_{n} \cos \left(\frac{n \pi}{l} c t\right)+B_{n} \sin \left(\frac{n \pi}{l} c t\right)$
wave

$$
\text { - } A_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t}
$$

DIFFUSION

This again demonstrates that solutions to the wave eq. conserve energy (sin and cos are periodic) while solutions to the diffusion eq. have decaying energy (deceasing exponential).

Fourier Series:

The expression of a function as a sum of sines aud cosines is called a Fourier series (Joseph Fourier 1768-1830).

It turns out that we can take infinite sums (but with caution!).

This is an extrelvely important concept in all the sciences.

This can be dove for aluorst ans function.
When we wrote $\phi(x)=\sum_{n} A_{n} \sin \left(\frac{n \pi}{l} x\right)$, then the RHS is culled the Fourier expansion of ϕ. Since there are only sines, the series is called a Fourier sine series.

Below well have an example with a series of casings. That will be called a Fourier casive series.

Comparison to Linear Algebras:

Let's look again at the equation $X^{\prime \prime}(x)=-\lambda X(x)$. Define \mathcal{L} to be the operator that sends a function $t s$ its second derivative: $\mathscr{L}(X(x))=-X^{\prime \prime}(x)$. Then this equation becomes:

$$
\mathscr{L} X=\lambda X .
$$

Compare this to $A x=\lambda x$ which you have seen in linear algebra (where A is an $n \times n$ matrix and x is a vector)

This is the same!

In livear algebras, a solution x is called an eigenvector and the corresponding number λ is called an eigenvalue.

Here, we discovered that there are infinitely many solutions

$$
X_{n}(x)=\frac{\sin \left(\frac{n \pi}{l} x\right)}{\uparrow} ; \quad \lambda_{n}=\left(\frac{n \pi}{l}\right)^{2} \quad n=1,2,3, \ldots
$$

These are called:
EIGENFUNCTIONS
EIGENVALUES
They depend on the boundary conditions. Below, for the Newman problem, well see that the eigenfunctions are cosines, not sines.

Let wo justify the assumption that all eigenvalues λ_{n} are positive numbers:

Proposition: All eigenvahes of $\left\{\begin{array}{l}-X^{\prime \prime}(x)=\lambda X(x) \quad 0<x<l \\ X(0)=X(l)=0\end{array}\right.$ are positive.

Proof: Let us rule out any other option.

- Could $\lambda=0$ be cur eigenvalue?

Suppose so. Then we would have $X^{\prime \prime}(x)=0$
$\Longrightarrow X(x)=D x+C$ for some constants C, D.
Plugging in $x(0)=0 \Rightarrow C=0$
Then $\quad x(l)=0 \Rightarrow D l=0 \Rightarrow D=0$.
So $\lambda=0$ cannot be an oigeneralue.

- Coned $\lambda<0$ be an eigenvalue?

Suppose so. Then write it as $\lambda=-\gamma^{2}$ for some $\gamma \in \mathbb{R}$. Then $x^{\prime \prime}=\gamma^{2} x$

$$
\Rightarrow \quad X(x)=C \cosh (r x)+D \sinh (\gamma x)
$$

$O=X(0)=C, \quad 0=X(l)=D \sinh (\gamma l)$. Since $r \neq 0$ we have $D=0$.
So $\lambda<0$ cannot be an eigenvalue.

- Could λ complex be an eigenvalue?

Suppose so. Devote $\sqrt{-\lambda}= \pm \gamma$, where $\gamma \in \mathbb{C}$.
The equation $X^{\prime \prime}(x)=-\lambda X(x)=\gamma^{2} X(x)$ hes solutions of the form $X(x)=C e^{\gamma x}+D e^{-\gamma x}$ (where this is the complex exponential function).

$$
\begin{aligned}
0=x(0) & =C+D \Rightarrow C=-D \\
0=x(l) & =C e^{r l}+D e^{-r l}=-D e^{r l}+D e^{-r l} \\
& =D\left(e^{-r l}-e^{r l}\right) \\
& \Rightarrow e^{-r l}-e^{r l}=0 \Rightarrow e^{-r l}=e^{\gamma l} \\
& \Rightarrow e^{2 r l}=1
\end{aligned}
$$

By properties of the complex exponential function this implies that $2 r l$ is a purely complex number and that $\operatorname{Im}(2 \gamma l)=2 \pi n, n \in \mathbb{Z}$.

$$
\Rightarrow \quad 2 \pi r i=2 \pi n, n \in \mathbb{Z} \quad \Rightarrow \quad r=-i \frac{n \pi}{l}, n \in \mathbb{Z}
$$

$\Rightarrow \lambda=-\gamma^{2}=\left(\frac{n \pi}{l}\right)^{2}$. But this is real aud positive!

So the only eige-values are the positive numbers

$$
\left(\frac{\pi}{l}\right)^{2},\left(\frac{2 \pi}{l}\right)^{2},\left(\frac{3 \pi}{l}\right)^{2}, \ldots .
$$

4.2 The Nenmame Condition
we now consider:

The Newman $=$ Specifying the Value Condition of ${ }^{\prime}$ ' on the Boundary

We now consider either the wave equation:

$$
\left\{\begin{array}{lr}
u_{t t}(x, t)=c^{2} u_{x x}(x, t) & 0<x<l \\
u_{x}(0, t)=u_{x}(l, t)=0 & t \geqslant 0 \\
u(x, 0)=\phi(x) \quad u_{t}(x, 0)=\psi(x) & 0<x<l
\end{array}\right.
$$

or the diffusion equation:

$$
\left\{\begin{array}{lc}
u_{t}(x, t)=k u_{x x}(x, t) & 0<x<l \quad t>0 \\
u_{x}(0, t)=u_{x}(l, t)=0 & t \geq 0 \\
u(x, 0)=\phi(x) & 0<x<l
\end{array}\right.
$$

Notice that now the boundary conditions involve u_{x} rather than n !
U sing separation of variables $u(x, t)=X(x) T(t)$ we reach the save equations for X and T as before.

X part: As before, we have $X^{\prime \prime}(x)+\beta^{2} X(x)=0$ which leads to solutions of the form:

$$
X(x)=C \cos (\beta x)+D \sin (\beta x)
$$

Let's write the derivative of this, which we will need

$$
\begin{aligned}
& x^{\prime}(x)=-C \beta \sin (\beta x)+D \beta \cos (\beta x) \\
& u_{x}(0, t)=0 \rightarrow x^{\prime}(0)=0 \rightarrow-C_{\beta} \underbrace{\sin 0}_{0}+D_{\beta} \underbrace{\cos 0}_{1}=0 \\
& \Rightarrow D \beta=0 \Rightarrow D=0 . \\
& u_{x}(l, t)=0 \Longrightarrow x^{\prime}(l)=0 \Rightarrow-C_{\beta} \sin (\beta l)=0 \\
& \Rightarrow \beta l=n \pi \quad \rightarrow \quad \beta_{n}=\frac{n \pi}{l} \\
& \lambda_{n}=\left(\frac{n \pi}{l}\right)^{2} \quad n=1,2, \ldots \\
& x_{n}(x)=\cos \left(\frac{n \pi}{l} x\right)
\end{aligned}
$$

These are the EIGENFUNCTIONS for the Neunamu problem

Can we have eigenvalues that are not positive? I.e. can we solve $-x^{\prime \prime}(x)=\lambda x(x) \quad 0<x<l$ with the boundary cord: $x^{\prime}(0)=x^{\prime}(e)=0$ and with $\lambda \in \mathbb{C}$ which is not positive?

Try $\lambda=0$: we get $x^{\prime \prime}(x)=0$ so that

$$
x(x)=C+D x, \quad X^{\prime}(x)=D
$$

Apply $B C$ s: $0=X^{\prime}(0)=X^{\prime}(1)=D$.
\rightarrow We can satisfy the $B C s$ with $D=0$.

$$
X(x)=C
$$

(constant)
is a legitimate solution!
$\Longrightarrow \lambda=0$ is cm eigenvalue!
$\lambda<0$ or $\lambda \in \mathbb{C} \backslash \mathbb{R}$: It can be shown that such values of λ cannot be eigenvalues but veer skip that for mow.

So the eigenvalues are:

$$
\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2} \quad n=0,1,2, \ldots
$$

There are the EIGENVALUES for the Newman problem

Ipart: The $T(t)$ part will be identical to what we san before, with the exception of the port coming from $\lambda=0$.

Diffusion equation: For $\lambda_{n} \neq 0$ we again have:

$$
\begin{aligned}
T^{\prime}(t) & =-\lambda_{n} k T(t) \\
\rightarrow T(t) & =A e^{-\lambda_{n} k t}
\end{aligned}
$$

For $\lambda=0$ we have $T^{\prime}(t)=0 \Longrightarrow T(t)=A$.

So, for $n=1,2,3, \ldots$ we have as before:

$$
u_{n}(x, t)=A_{n} e^{-\left(\frac{n \pi}{t}\right)^{2} k t} \cos \left(\frac{n \pi}{l} x\right) \quad n=1,2, \ldots
$$

Notice that the sine is now a coste!

And we also have a u_{0} now: the spatial part is $\cos \left(\frac{0 . \pi}{l} x\right)=1$ and the temporal port is a constant which we called A above. For reasons which will become clean, we call $A_{0}=2 A$, to find:

$$
u(x, t)=\frac{1}{2} A_{0}+\sum_{n} A_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \cos \left(\frac{n \pi}{l} x\right)
$$

In addition, the initial condition will have to satisfy 3 :

$$
\phi(x)=u(x, 0)=\frac{1}{2} A_{0}+\sum_{n} A_{n} \cos \left(\frac{n \pi}{l} x\right)
$$

Wave equation: For $\lambda>0$ we get the same behavior as were seen before, so we have:

$$
u_{n}(x, t)=\left[A_{n} \cos \left(\frac{n \pi}{l}(t)+B_{n} \sin \left(\frac{n \pi}{l} c t\right)\right] \cos \left(\frac{n \pi}{l} x\right)\right.
$$

For $\lambda=0$ we get $X_{0}(x)=$ const as before. For the T part we have $T^{\prime \prime}(t)=\frac{\lambda}{0} c^{2} T(t)=0$ s that $T_{0}(t)=A+B t$. This $T_{0}{ }^{\circ}$ term goes with the Ko term which is a constant. So, to conchole, the general slention has the govern:

$$
\begin{aligned}
& u(x, t)=\frac{1}{2} A_{0}+\frac{1}{2} B_{0} t+\sum_{n}\left[A_{n} \cos \left(\frac{n \pi}{l} c t\right)+B_{n} \sin \left(\frac{n \pi}{l} c t\right)\right] \cos \left(\frac{n \pi}{l} x\right) \\
& \phi(x)=n(x, 0)=\frac{1}{2} A_{0}+\sum_{n} A_{n} \cos \left(\frac{n \pi}{l} x\right) \\
& \psi(x)=u_{t}(x, 0)=\frac{1}{2} B_{0}+\sum_{n} \frac{n \pi}{l} c B_{n} \cos \left(\frac{n \pi}{l} x\right)
\end{aligned}
$$

