
 4.1 The Dirichlet Condition on an Interval
As we have seen in section 1.4 there are different
types of boundary conditions In this section we dig
deeper into
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Condition
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The Wave Equation ping
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with some initial conditions

We try to solve by making an ansatz f educated
guess that the solution can be separated into
a part depending on x and a part depending
on t

u Gt X T t



Plugging this into the wave eq we have
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Dividing by c XT this becomes
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The Uts is only a function of t and the RHS
is only a function of x The only way for them
to equal one another is if they are both
constant We call this constant X So
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we will see that x must be positive which is why
we chose to introduce a sign in front
of test and in front of

Since x will be positive there exists per
such that P2 t So we replace X by p



X part we start with the equation p
X t p X 0

We know how to solve this sines and cosines
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Now we impose the boundary conditions the

string is fixed at x 0,1 so that
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In order for sin fl to be 0 we must have

pl wit There are infinitely many p's that
satisfy this put

so that Xu Y 4 1,2 3

and XI is a multiple of sin Ctx

T part The T part is T t Ept O
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Recalling that up D Xx Ta we find that

for each n we have a solution of the form
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By linearity we can sein finitely many such
solutions un so that
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is a solution of the wave ey that satisfies
u fo t n k t 0 Tosatisfy the initial conditions
we must have
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For 4 we need a t derivative
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Harmonics Let's go back and look at the basic
solutions Un n 1 2 3

u A as Ect B sin Ect sin Ex
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V3 A as GE Ct By sin 3 Ct sin Ex
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Each one has its x o ne

own temporal behavior called a frequency given by
the coefficient in the temporal part The first
frequencies are I C E c 35C
since c f these are inherent properties of
the string depending on its tension density length a


