4.1 The Dirichlet Condition on an Interval

As we have seen in Section 1.4 there are different types of boundary conditions. In this section we dig deeper into:

The Dirichlet $=$ Specifying the Value Couclition of w on the Boundary

The Wave Equation:

with some initial conditions.

We try to solve by making an ansatz (= educated greer) that the solution can be separated into a part depending on x and a part depending on t :

$$
u(x, t)=x(x) T(t)
$$

Plugging this into the wave eq. we have:

$$
X(x) T^{\prime \prime}(t)=u_{t t}=c^{2} u_{x x}=c^{2} X^{\prime \prime}(x) T(t)
$$

Dividing by $-c^{2} \times T$ this becomes:

$$
-\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}=-\frac{x^{\prime \prime}}{X}
$$

The LHS is only a function of t, and the RHS is only a function of x. The only way for them to equal one another is if the 3 are both constant. We call this constant λ. So

$$
-\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}=-\frac{x^{\prime \prime}}{X}=\lambda
$$

(we will see that λ must be positive, which is why we chose to introduce a $\overline{x^{\prime \prime}}$ sign in front of $\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}$ and in front of $\frac{x^{\prime \prime}}{x}$)
\rightarrow since λ will be positive, there exists $\beta \in \mathbb{R}$ such that $\beta^{2}=\lambda$. So we replace λ by β^{2}.
x part: We start with the equation $-\frac{x^{\prime \prime}}{x}=\beta^{2}$.

$$
\Rightarrow \quad X^{\prime \prime}(x)+\beta^{2} X(x)=0
$$

We know how to solve this: sines and cosines!

$$
\Rightarrow \quad x(x)=C \cos (\beta x)+D \sin (\beta x)
$$

where C, D are constants.

Now we impose the boundary conditions: the string is fixed at $x=0, l$, so that

$$
\begin{aligned}
& X(0)=0 \Rightarrow C \underbrace{\cos 0}_{1}+D \underbrace{\sin 0}_{0}=0 \Rightarrow C=0 \\
& X(l)=0 \Rightarrow D \underbrace{\sin (\beta l)}_{\text {this must be } 0}=0
\end{aligned}
$$

In order for $\sin (\beta l)$ to be 0 , we must have $\beta l=n \pi$. There are infinitely many β 's that satisfy this:

$$
\beta_{n}=\frac{n \pi}{l}
$$

so that: $\quad \lambda_{n}=\left(\frac{n \pi}{l}\right)^{2} \quad(n=1,2,3, \ldots)$
and $X_{n}(x)$ is a multiple of $\sin \left(\frac{n \pi}{l} x\right)$
Tpart: The Tout is: $T^{\prime \prime}+c^{2} \beta^{2} T=0$

$$
\Longrightarrow \quad T(t)=A \cos (\beta c t)+B \sin (\beta c t)
$$

where A, B are constants.

Recalling that $u(x, t)=X(x) T(t)$ we find that for each n we have a solution of the form:

$$
u_{n}(x, t)=\left[A_{n} \cos \left(\frac{n \pi}{l} c t\right)+B_{n} \sin \left(\frac{n \pi}{l} c t\right)\right] \sin \left(\frac{n \pi}{l} x\right)
$$

By linearity, we can sem finitely many such solutions u_{n}, so that

$$
u(x, t)=\sum_{n}\left[A _ { n } \operatorname { c o s } \left(\frac{n \pi}{l}(t)+B_{n} \sin \left(\frac{n \pi}{l}(t)\right] \sin \left(\frac{n \pi}{l} x\right)\right.\right.
$$

is a solution of the wave er. that satisfies $u(0, t)=u(l, t)=0$. To satisfy the initial conditions we must hale:

$$
\begin{aligned}
\phi(x)=u(x, 0) & =\sum_{n}[A_{n} \underbrace{\cos \left(\frac{n \pi}{l} c \cdot 0\right)}_{1}+B_{n} \underbrace{\sin \left(\frac{n \pi}{l} c \cdot 0\right)}_{0}] \sin \left(\frac{n \pi}{l} x\right) \\
& =\sum_{n} A_{n} \sin \left(\frac{n \pi}{l} x\right)
\end{aligned}
$$

For ψ, we need a t-derivative:

$$
\begin{aligned}
& u_{t}(x, t)=\sum_{n}\left[-A_{n}\left(\frac{n \pi}{l} c\right) \sin \left(\frac{n \pi}{l} c t\right)+B_{n}\left(\frac{n \pi}{l} c\right) \cos \left(\frac{n \pi}{l} c t\right)\right] \sin \left(\frac{n \pi}{l} x\right) \\
& \psi(x)=u_{t}(x, 0)=\sum_{n}[-A_{n} \frac{n \pi}{l} c \underbrace{\sin \left(\frac{n \pi}{l} c \cdot 0\right)}_{0}+B_{n} \frac{n \pi}{l} c \underbrace{\cos \left(\frac{n \pi}{l} c 0\right.}_{1})] \sin \left(\frac{n \pi}{l} x\right) \\
& =\sum_{n} B_{n} \frac{n \pi}{l} c \sin \left(\frac{n \pi}{l} x\right)
\end{aligned}
$$

Harmonics: Let's go buck auk look at the basic solutions $u_{n}, n=1,2,3 \ldots \ldots$

$$
\begin{aligned}
& u_{1}=\left(A_{1} \cos \left(\frac{\pi}{l} c t\right)+B_{1} \sin \left(\frac{\pi}{l}(t)\right) \sin \left(\frac{\pi}{l} x\right)\right. \\
& u_{2}=\left(A_{2} \cos \left(2 \frac{\pi}{l} c t\right)+B_{2} \sin \left(2 \frac{\pi}{l}(t)\right)\right. \\
& u_{3}=\underbrace{\left(A_{3} \cos \left(3 \frac{\pi}{l} c t\right)+B_{3} \sin \left(3 \frac{\pi}{l}(t)\right)\right.}_{\text {temporal part }} \underbrace{\sin \left(3 \frac{\pi}{l} x\right)}_{\text {spatial part }}
\end{aligned}
$$

Here's how the first 4 of these look like:

They are called HARMONICS.
Each one has its

own temporal behavior, called a frequency, given by the coefficient in the temporal part. The first frequencies are: $\frac{\pi}{l} c, \frac{2 \pi}{l} c, \frac{3 \pi}{l} c, \ldots$. Since $c=\sqrt{\frac{T}{\rho}}$ these are inherent properties of the string (depending on its tension, density, lengthen).

