2.4 The Diffusion Equation On the Real Live

The textbook has a complicated derivation of a formula for the solution of the problem

$$
\left\{\begin{array}{l}
u_{t}(x, t)=k u_{x x}(x, t) \quad-\infty<x<\infty \quad t>0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

The formula turns out to be:

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \phi(y) d y
$$

(We only do some aspects. Only what we do here will be examinable; the discussion in the book will wot feature in the exam.

The Gaussian: The function

$$
\begin{equation*}
S(x, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-\frac{x^{2}}{4 k t}} \tag{t>0}
\end{equation*}
$$

is called a Gaussian.

Properties:
a. $\quad \int_{-\infty}^{\infty} S(x, t) d x=1 \quad \forall t>0$.

Proof: We do some thing that appears to complicate wings: we include also the 3 -variable, and integrate in \mathbb{R}^{2} instead of \mathbb{R}. This will end up makily things easier.

$$
\begin{aligned}
& \left(\int_{-\infty}^{\infty} S(x, t) d x\right)^{2}=\left(\int_{-\infty}^{\infty} S(x, t) d x\right)\left(\int_{-\infty}^{\infty} S(y, t) d y\right) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(x, t) S(y, t) d x d y \\
& =\frac{1}{4 \pi k t} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2} t^{2}}{4 k t t^{2}}} d x d y \\
& =\frac{1}{4 \pi k t} \int_{0}^{2 \pi} \int_{0}^{\infty} e^{-\frac{r^{2}}{\text { पादt }}} r d r d B \\
& =\frac{1}{4 \pi k t} \cdot 2 \pi \cdot(-2 k t)\left[e^{-\frac{r^{2}}{4 k t}}\right]_{r=0}^{\infty} \\
& =1 \text {. } \\
& \Rightarrow \quad \int_{-\infty}^{\infty} s(x, t) d x=1 \text {. } \\
& \text { b. } \quad \forall x \neq 0 \quad \lim _{t \downarrow 0} S(x, t)=0 \text {. }
\end{aligned}
$$

Proof; Fix $x \neq 0$. Let $t=\frac{1}{4 k s}, s=\frac{1}{4 k t}$

$$
\begin{gathered}
\lim _{t \downarrow 0} \frac{1}{\sqrt{4 \pi k t}} e^{-\frac{x^{2}}{4 k t}}=\lim _{s \rightarrow \infty} \frac{1}{\sqrt{\pi}} \frac{\sqrt{s}}{e^{s x^{2}}}=\lim _{\delta \rightarrow \infty} \frac{1}{\sqrt{\sqrt{\pi}}} \frac{1}{2 \sqrt{5} x^{2} e^{s x^{2}}}=0 \\
\text { 1'Hôpital }
\end{gathered}
$$

c. S satisfies the diffusion eq:

$$
\left.\begin{array}{l}
S_{t}=e^{-\frac{x^{2}}{4 k t}}\left[-\frac{1}{2} \cdot \frac{1}{\sqrt{4 \pi k}} \frac{1}{t^{3 / 2}}+\frac{1}{\sqrt{4 \pi k t}} \frac{x^{2}}{4 k} \frac{1}{t^{2}}\right] \\
S_{x}=\sqrt{4 \pi k t} \\
S_{x x}=e^{-\frac{1}{4 k t}}\left[-\frac{x^{2}}{4 k t}\right) e^{-\frac{x^{2}}{4 k t}}=\frac{-2 x}{\sqrt{\pi}(4 k t)^{3 / 2}} e^{-\frac{x^{2}}{4 k t}} \\
\sqrt{\pi}(4 k t)^{3 / 2}
\end{array}+\frac{4 x^{2}}{\sqrt{\pi}(4 k t)^{3 / 2} 4 k t}\right] \quad \$
$$

check that $S_{z}=k S_{x x}$.

Intuition: Here are two good mays to think about the ureanivy of $S(x, t)$.

Brownian motion $S(x, t)$ is the probability to find a partide mdergoing Brouniem motion at the print x at tine t if it started at $x=0$ at $t=0$. (this goes back to Einstein)

$$
t=0
$$

$$
t>0
$$

Sand: Imagine an infinite column of sand at $x=0$ at time $t=0$ Once we "turn on time" the sand will iunnediately farl. The resulting shapetisu"?"? will be $S(x, t)$.

Conclusion: "A δ-"function" at time $t=0$ at $x=0$, will "become" $S(x, t)$ if it is the initial condition for $u_{t}=k u_{x x}$ on the veal line.

- If it is at $x=x_{0}$ at $t=0$, then we get $\delta\left(x-x_{0}, t\right)$ instead.
- If we start with several 8 -functions (i.e. several columns of sand) at $\left\{x_{i}\right\}_{i=0}^{N}$ then the result will be (from linearity)

$$
\sum_{i=0}^{N} S\left(x-x_{i}, t\right)
$$

- Leap of faith: If we start with $\phi(x)$, then it is like starting with infinitely mans s-functions, each at a different x and each weighted by $\phi(x)$, so we get

$$
u(x, t)=\int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y \quad t>0
$$

