

With Leif = 2, - k 2xx we can't do a similar trick, and that makes the diffusion equation a more complicated equation.

So we start by showing some important properties:

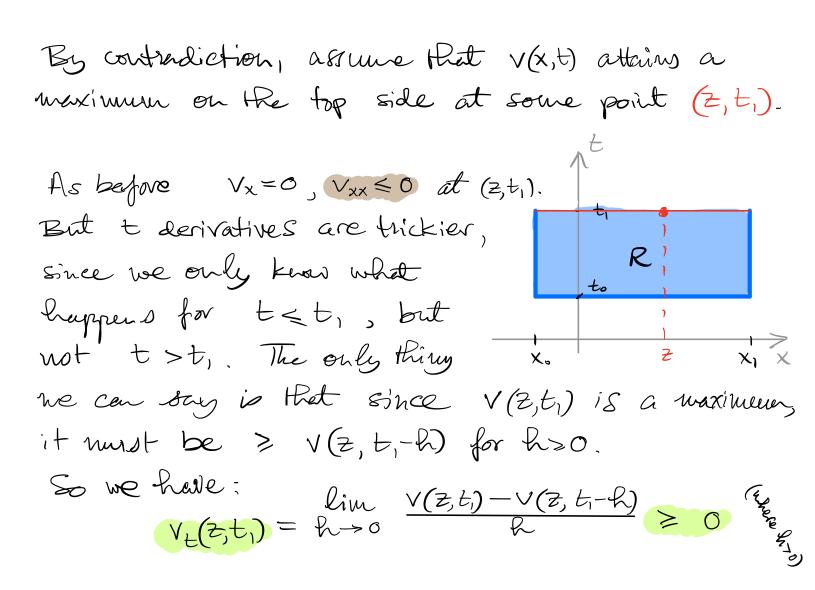
Theorem: (Morrimum Principle) Suppose that u(x,t) is a solution of uz=kuxx. Consider any rectangle The wax of n in the shaded F $\mathcal{R} := [X_{o}, X_{i}] \times [t_{o}, t_{i}]$ area is attained on one of the in space-time. - t, blue sides Then $\operatorname{Ren}^{Max} \mathcal{U}(x,t) = \mathrm{Re}$ R maximum of n in the rectangle, is attained either initially + X. \mathbf{x}_{1} x (on the side with t=to) on on one of the lateral sides (x=xo or x=x,).

Proof: Denote
$$M = \max of n oh :$$

We veed to show that M is
also the max of u oh: R
That is: we need to show that $u(x,b) \leq M$ in R .
(Note that M is well-defined: \Box is a closed
and bounded set, and $u(x,t)$ is a continuous
function, so it altering its max on \Box .
(Note that $f(x) = u(x,b) + ex^2$.
We shall first prove that v attains its max on Γ ,
by castradiction
max $v(x,b) = \max (u(x,b) + ex^2)$
 $\leq \max u(x,b) + \max ex^2$
 $\leq M + \epsilon ((x,1+1xd)^2)$
The function v satisfies:
 $v_{L}-kv_{xx} - 2\epsilon k = -2\epsilon k < 0$.
Contradiction assumption:
Suppose that $v(x,b)$ attains its max
at some point (y,s) inside R (in
the indefinition of R). I.e.
 $x_0 \leq y \leq x_1$ to $\leq s < t_1$.
 $v_{L} = v_{L} + c < v_{L} + \dots < v_{L}$ is a some point (y, s) inside R (in
the indefinition of R). I.e.
 $x_0 \leq y \leq x_1$ to $\leq s < t_1$.
 $v_{L} = v_{L} + v_{L} + \dots < v_{L}$ is a some point (y, s) inside R (in
the indefinition of R). I.e.
 $x_0 \leq y \leq x_1$ to $\leq s < t_1$.
 $v_{L} = v_{L} + v_{L} + \dots < v_{L} + \dots < v_{L}$ is a some point (y, s) in the v_{L} is $v_{L} = v_{L} + v_{L} + \dots < v_{L}$ is $v_{L} = v_{L} + v_{L} + \dots < v_{L}$ is $v_{L} = v_{L} + \dots < v_{$

Then
$$V_{\pm} = 0$$
 and $V_{x} = 0$ } at (y, s)
and $V_{\pm\pm} \leq 0$ and $V_{xx} \leq 0$ } at (y, s)
So $V_{\pm} - k V_{xx} \geq 0$. But this contradicts \circledast .

Therefore V(x,t) cannot attain its maximum inside the interior of R. We just need to rule out that the max is at the top edge of R.



So Vt - KVxx > 0 again in contradiction to @.

So the maximum of V cannot be inside the rectangle
or on the top edge. Since it must be somewhere
in the classed vectangle
$$\mathcal{R}$$
 (the maximum of a continuous
function on a classel + bounded set is attained),
the maximum must be attained one \mathcal{M} .
Hence $V(x,t) \leq M + \varepsilon(|x_1| + |x_0|)^2$.
Now recall that $V(x,t) = U(x,t) + \varepsilon x^2$.
So $U(x,t) = V(x,t) - \varepsilon x^2$
 $\leq M + \varepsilon [(K_1| + |x_0|)^2 - x^2]$ $\forall x_0 \leq x \leq x_1$

But this is the for any
$$\Sigma > 0$$
. So it must
hold that
 $u(xt) \le M$ $\forall t_0 \le t \le t_1$
 $\forall x_0 \le x \le x_1$.

<u>Important remark</u>: We proved a theorem for the <u>max</u> of \mathcal{U} . What makes the max of \mathcal{U} more special than the <u>min</u> of \mathcal{U} ? NOTHING! There's no essential difference. Indeed, we can prove the same theorem for $\min_{\mathcal{X}} \mathcal{U}(\mathcal{X},t)$ by applying the theorem to $-\mathcal{U}(\mathcal{X},t)$. The max of $-\mathcal{U}$ is -min of \mathcal{U} .

<u>Conclusion</u>: If n(x,t) solves the diffusion equation, then both the minimum and the maximum -f n in are attained on .

Theorem: (Strong Maximum Principle) The max (vesq. min) of n lies strictly on and ut in the interior of (with the exception of the case while n is constant throughout).

THIS IS A DIFFICULT THEOREM WHICH WE ACCEPT WITHOUT PROOF