In this chapter we fans on the wove and diffusion equations on the whee real lire $-\infty<x<+\infty$.
This is justified by "zooming in" to a very small subdomain of our domaine: then the boudars seems so far away Dat it might as well be at $\pm \infty$.
2.1 The Wave Equation
we consider the equation
(x) $u_{t t}=c^{2} h_{x x}$ for $-\infty c x<+\infty, t \geqslant 0$.

First recall the following:

1) Solutions of $a u_{x}+b u_{y}=0$ have the form

$$
u(x, y)=f(b x-a y)
$$

Therefore, solutions of $u_{t}+c u_{x}=0$ have the form

$$
u(x, t)=f(c t-x)
$$

2) If \mathscr{L} is linear, $\mathscr{L} w=g$ and $\mathscr{L} v=0$ then $\mathscr{L}(w+v)=g$.

So to she $\mathcal{L}_{w}=S$ we reed: a. a particular silution w b. curb solution of the hrouggereons problem.

Theorem: Any solution $n \rightarrow f(\rightarrow)$ can be represented as

$$
u(x, t)=f(x+c t)+g(x-c t)
$$

for some functions $f, g \in C^{2}(\mathbb{R} ; \mathbb{R})$.

$$
\left(\begin{array}{l}
\text { this } \\
\text { memos dione } \\
\text { functions active twice differentiable } \\
\mathbb{R} \text { to } \mathbb{R}
\end{array}\right)
$$

Proof 1:

Let $\mathscr{L}_{c}=\partial_{t}+c \partial_{x}, \quad \mathcal{L}_{-c}=\partial_{t}-c \partial_{x}$.
Then $\mathcal{L}_{\text {vale }}=\partial_{t t}-c^{2} \partial_{x x}=$

$$
\begin{aligned}
& =\left(\partial_{t}-c \partial_{x}\right)\left(\partial_{t}+c \partial_{x}\right)=\mathscr{L}_{-c} \mathscr{L}_{t} \\
& =\left(\partial_{t}+c \partial_{x}\right)\left(\partial_{t}-c \partial_{x}\right)=\mathscr{L}_{c} \mathcal{L}_{-c}
\end{aligned}
$$

That is, the wave operator is a composition $>f$ left-right (or night-left) transport opocat ors.

Consider $\mathscr{L}_{\text {none }}=\mathscr{L}_{-c} \mathscr{L}_{c}$. Define $v=\left(\partial_{t}+c \partial_{x}\right) u=\mathscr{L}_{c} u$. Then $\mathscr{L}_{\text {wave }}(u)=\left(\partial_{t}-c \partial_{x}\right)\left(\partial_{x}+c \partial_{x}\right) u=\left(\partial_{t}-c \partial_{x}\right) v=\mathcal{L}_{e} v$

So $\quad \mathscr{L}_{\text {wave }}(n)=0 \quad\left\{\begin{array}{l}\mathscr{L}_{c} u=v \\ \mathscr{L}_{-c} v=0\end{array}\right.$

We know that (2) has the solution $v(x, t)=R(x+c t)$ where h is any function.
considering (1), it now takes the form:

$$
\mathscr{L}_{c} u=\left(\partial_{t}+c \partial_{x}\right) u^{=}=h(x+c t)
$$

This is an inhomogeneous linear PDE (transport 1D).
The solution will be given by a particular solution + anything in the kernel of \mathscr{L}_{c}.

Particular solution: We suspect that u is essentially the cutiderivative of h. Let $H(w)=\int h(w) d w$, where $w=x+c t$.

$$
\begin{aligned}
& \partial_{t} H=H^{\prime} \partial_{t} \omega=H^{\prime} c, \quad c \partial_{x} H=c H^{\prime} \partial_{x} w=c H^{\prime} \\
& \Rightarrow\left(\partial_{t}+c \partial_{x}\right) H=2 c H^{\prime}=2 c h
\end{aligned}
$$

So, almost: it's not H, rather it is $\frac{H}{2 c}$.

$$
\mathcal{L}_{c}\left(\frac{H}{2 c}\right)=h(x+c t) .
$$

Homogeneous solution: we need a solution of $\mathscr{L}_{c} w=0$. We already know that it has the fork $w(x, t)=g(x-c t)$.

$$
\Rightarrow u(x, t)=f(x+c t)+g(x-c t)
$$

(We can further verify this by also considering the other decomposition $\quad \mathscr{L}_{\text {wave }}=\mathscr{L}_{c} \mathscr{L}_{-c}$).

Proof 2: Define $\xi=x+c t \quad \eta=x-c t$.

$$
\begin{aligned}
\partial_{x} u(\xi, \eta) & =\partial_{\xi} u \cdot \partial_{x} \xi+\partial_{\eta} u \cdot \partial_{x} \eta=\left(\partial_{\xi}+\partial_{\eta}\right) u(\xi, \eta) \\
\partial_{t} u(\xi, \eta) & =\partial_{\xi} u \cdot \partial_{t} \xi+\partial_{\eta} u \cdot \partial_{t} \eta=c \partial_{\xi} u-c \partial_{\eta} u \\
& =c\left(\partial_{\xi}-\partial_{\xi}\right) u
\end{aligned}
$$

$$
\begin{aligned}
& \mathscr{L}_{c}=\partial_{t}+c \partial_{x}=c\left(\partial_{\xi}-\partial_{\xi}\right)+c\left(\partial_{\xi}+\partial_{\xi}\right)=2 c \partial_{\xi} \\
& \mathscr{L}_{-c}=\partial_{t}-c \partial_{x}=c\left(\partial_{\xi}-\partial_{\xi}\right)-c\left(\partial_{\xi}+\partial_{\xi}\right)=-2 c \partial_{\xi}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathscr{L}_{\text {wave }} u^{n} & =\mathscr{L}_{-c} \mathscr{L}_{c} u \\
& =\left(-2 c \partial_{\xi}\right)\left(2 c \partial_{\xi}\right) u \\
& =-4 c^{2} \partial_{\eta} \partial_{\xi} u
\end{aligned}
$$

Since $c \neq 0$ we have $\partial_{\eta} \partial_{\xi} u=0$ which implies

$$
\begin{aligned}
u(x, t) & =f(\xi)+g(\eta) \\
& =f(x+c t)+g(x-c t)
\end{aligned}
$$

(see Section 1.1 Example 3).

The initial value problem:

Now we consider:

$$
\begin{cases}u_{t t}=c^{2} u_{x x} & -\infty<x<\infty, \quad t \geqslant 0 \\ u_{(x, 0)}=\phi(x) & -\infty<x<\infty \\ u_{t}(x, 0)=\psi(x) & -\infty<x<\infty\end{cases}
$$

Theorems: (d'Alembert's formula)

$$
u(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s
$$

Prof: we already know that in hers the form $u(x, t)=f(x+c t)+g(x-c t)$.

Them: $\quad u_{t}(x, t)=c f^{\prime}(x+c t)-c g^{\prime}(x-c t)$
Setting $t=0$ in these, we find:

$$
\begin{aligned}
& \phi(x)=u(x, 0)=f(x)+g(x) \\
& \psi(x)=u_{t}(x, 0)=c f^{\prime}(x)-c s^{\prime}(x)
\end{aligned}
$$

Differentiating the first and dividing the second by C, we bax:

$$
\begin{aligned}
\phi^{\prime} & =f^{\prime}+g^{\prime} \\
\frac{1}{c} \psi & =f^{\prime}-g^{\prime} \\
f^{\prime} & =\frac{1}{2}\left(\phi^{\prime}+\frac{1}{c} \psi\right) \\
g^{\prime} & =\frac{1}{2}\left(\phi^{\prime}-\frac{1}{c} \psi\right) \\
f(s) & =\frac{1}{2} \phi(c)+\frac{1}{2 c} \int_{0}^{s} \psi(r) d r+A \\
g(s) & =\frac{1}{2} \phi(s)-\frac{1}{2 c} \int_{0}^{s} \psi(r) d r+B
\end{aligned}
$$

$$
\Longrightarrow \quad f(s)=\frac{1}{2} \phi(s)+\frac{1}{2 c} \int_{0}^{s} \psi(r) d r+A
$$

A, B being some constants. Since $\phi=f+g$ we know that $A+B=0$.

Hence

$$
\begin{aligned}
u(x, t) & =f(x+c t)+g(x-c t) \\
& =\frac{1}{2} \phi(x+c t)+\frac{1}{2 c} \int_{0}^{x+c t} \psi+\frac{1}{2} \phi(x-c t)-\frac{1}{2 c} \int_{0}^{x c t} \psi \\
& =\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s
\end{aligned}
$$

Excumple: Plucked string.
Consider a stang with the initial conditions:

$$
\begin{aligned}
& \phi(x)= \begin{cases}b-\frac{b|x|}{a} & \text { for }|x|<a \\
0 & \text { for }|x| \geqslant a\end{cases} \\
& \psi(x)=0
\end{aligned}
$$

This means that ne start at time $t=0$
 with a static "plucked" string

We know that: $\quad u(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]$

The wave will travel along the string with speed C to va lift and to the right. So Λ will start flattening and eventually will result in 2 signals,
one unorives to the left and one to the right, each of them half the size of \rightarrow.

So, for very large times, we expect to see:

Based on this sketch, we expect the waves to separate when $c t-a=0 \Rightarrow t=\frac{a}{c}$. S we check for several times:

1. $t=\frac{a}{c}: u\left(x, \frac{a}{c}\right)=\frac{1}{2}[\phi(x+a)+\phi(x-a)]$

$$
\begin{aligned}
u\left(0, \frac{a}{c}\right) & =\frac{1}{2}[\phi(a)+\phi(-a)]=0 \\
u\left(a, \frac{a}{c}\right) & =\frac{1}{2}[\phi(a+a)+\phi(a-a)] \\
& =\frac{1}{2}[0+\phi(0)] \\
& =\frac{1}{2} b
\end{aligned}
$$

Similarly $u\left(-c, \frac{a}{c}\right)=\frac{1}{2} b$ checking more points, we can find

2. Check $t<\frac{a}{c}$
3. check $t>\frac{a}{c}$.

