
 In this chapter we focus on the wall and diffusion
equations on the whole real live o x to

This is justified by zooming in to a very small
subdomain of our domain then the boundary seems
so far away that it might as well be at IP

2 1 The Wave Equation
We consider the equation
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That is the wave operator is a composition of
left right for right left transport operators

Consider Love L e Le Define V Got CJD u here
Then L waveCD Gt C 2 2 02 U Ge Ca V Lev

Lcu V i

so Lwaven 0
L er o e

We know that 2 has thesolution vex E L Ect
where l is any function
considering i it now takes the form
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This is an inhomogeneous linear PDE Ctransport 10

The solution will be given by a particular solution t
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Particular solution We suspect that u is essentially the
anti derivative of h Let H wt Sh w dw where we xtct
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Homogeneous solution We need a solution of Low O

We already know that it hes the form wht g x ct
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see section 1.1 Example 3

The initial value problem

Now we consider
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Proof we already know that a has the
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Differentiating the first and dividing the
second by C we face
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Example Plucked string

Consider a string with the initial conditions
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This means that we

start at time t o
ta b i x

with a static plucked string y

We know that net I a Ect t K at

The wave will travel along the string with speed e

to the left and to the right So will start

flattering and eventually will result in 2 signals



one moving to the left and one to the right
each of them half the size of

So for very large times we expect to see
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Based on this sketch we expect the waves to

separate when et a o e E E
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