

x, y, independent variables. $u = u(x, y, \dots)$

A partial differential equation (PDE) is an equation that relates x, y, ..., n(x, y, ...) and partial derivatives of a with xiy,...

The order of a PDE is the highest derivetive that appears.

Ex1: Transport in 1D

Consider some function n(x)and suppose it moves at speed c to the right. Then now u = n(x,t) and b+ch $M = \int_{0}^{b} u(x,t) dx = \int_{0+ch}^{b} u(x,t+h) dx$ Differentiate w.r.t. b to get $\frac{\partial M}{\partial b} = u(b,t) = u(b+ch, t+h)$

Differentiating this w.r.t. h we get

$$\frac{2}{2k} \begin{pmatrix} 2M \\ 2b \end{pmatrix} = \frac{2}{2k} (u(b,b)) = 0$$

 $= \frac{2}{2k} (u(b+ch, t+k)) = \frac{2u}{2k} \frac{2x}{2k} (b+ch) + \frac{2u}{2t} \frac{2t}{2k} (b+ch)$
 $= u_x(b+ch, t+k) \cdot c + u_t(b+ch, t+k) \cdot 1$

Plugging in
$$h = 0$$
 we have:
 $n_t(b, t) + C n_x(b, t) = 0$

T(
$$x_{0,t}$$
) = $T(x_{1,t})$
So T is independent of x. We assume that
it is also independent of t.

$$\frac{\text{Vertical}}{\text{T}(\text{sing} - \text{sing})} = F = ma = \int_{x_0}^{x_1} u_{tt}(x,t) dx$$

$$\frac{u_x(x_y,t)}{\sqrt{1 + u_x^2}(x,y,t)} \approx u_x(x_1,t)$$

$$\text{sing} \approx u_x(x_0,t)$$

$$- > \qquad \top \left(u_{x}(x_{1},t) - u_{x}(x_{0},t) \right) = \int_{x_{0}}^{x_{1}} p u_{tt}(x,t) dx$$

Replace
$$x_1 = x_0 + h$$
 and divide by h :

$$T = \frac{u_x(x_0 + h, t) - u_x(x_0, t)}{h} = \frac{1}{h} \int_{x_0}^{x_0 + h} u_{tt}(x, t) dx$$

This is the wave equation, and C twens out
to be the wave speed.
In 2D we get
$$U_{tt} = C^2 (u_{xx} + u_{yy})$$

 $3D$ $u_{tt} = C^2 (u_{xx} + u_{yy} + u_{tt})$

Theorem: ("Vanishing theorem")
Let open
$$Do \in \mathbb{R}^n$$
 $n \ge 1$. Let $f: Do \longrightarrow \mathbb{R}$ be continuous
satisfying $\iiint_D f(\vec{x}) d\vec{x} = 0$ for any open $D \in Do$.
Then f is identically 0 .
EX 3: Vibrating drumhead.
Let $Do \in \mathbb{R}^2$ be open.
Suppose that the boundary
of Do is a frame holding
a meanbrane (lite a drum).
Let $u(x,y,t)$ denote the vertical
displacement of the meanbrane
at the point $(x,y) \in Do$ at time $t \in \mathbb{R}$.

Let
$$D \subset Do$$
 be any open subset (sometimes called
domain). Let $\vec{T}(x,y,t)$ be the tension, and let
 $T(x,y,t) = \|\vec{T}(x,y,t)\|$ (magnitude). As before, the
Regizential component guarantees that T events laped
on (x,y) , and we assume again that it doesn't laped
on t . Similar to the 1D case, the vertical contribution
is given by
 $\int T \frac{\partial U}{\partial n} ds = F = ma = \iint_D p n_{th} dxdy$

where \hat{n} is the outward pointing mit worked vector to the boundary of D and $\frac{\partial u}{\partial n} = \hat{n} \cdot \nabla u$ is the directional derivative.

By Green's theorem (which is just the 2D version
of the divergence theorem, also Games' theorem)
$$\iint_{D} \nabla \cdot (T \nabla u) \, dx \, dy = \iint_{D} gn_{tt} \, dx \, dy$$
equivalently:
$$\iint_{D} (\nabla \cdot (T \nabla u) - p u_{tt}) \, dx \, dy = 0$$
Since D is arbstrong, the vanishing theorem
implies that
$$\nabla \cdot (T \nabla u) - p u_{tt} = 0$$

and since T is constant we have

$$u_{11} = c^2 \nabla (\nabla u) = c^2 (u_{11} + u_{12})$$

where, as before, $c = \sqrt{\frac{T}{p}}$. In 3D

$$u_{tt} = C^2 (u_{xx} + u_{yy} + u_{zz})$$

We denote $\Delta u = u_{xx} + u_{yy} + u_{zz}$

Ex 4: Diffusion.

X_o ×, Fluid in a tube, and dye diffusing in it. The mass of the dye between x_{6}, x_{1} : $M(t) = \int_{x_{0}}^{x} u(x, t) dx$ (*n* is the concentration) (n is the concentration) $\frac{dM}{dt} = \int_{x_0}^{x_1} u_t(x, b) dx$

The mass can only charge if dge flows in
or out of their section of the tabe. So
$$\frac{dM}{dt} = kn_x(x_1,t) - kn_x(x_0,t)$$

(k is a constant that takes care of units)
So we have
$$\int_{x_0}^{x_1} u_t(x,t) dx = k u_x(x_1,t) - k u_x(x_0,t)$$

ut = kuxx.

 $u_t = k \left(u_{xx} + u_{yy} \right)$ In 2D we get $u_{\ell} = k \left(u_{xx} + u_{yy} + u_{zz} \right)$ 3D

Using the notation $\Delta = \frac{2^2}{2x^2} + \cdots$ we find the general form:

Wave:
$$\partial_{tt}u = c^2 \Delta u$$

Diffusion: $\partial_t u = k \Delta u$

Ex5: Heat flou.

havannie functions.

The diffusion eq. also describes heat flow. Read this.

Ex 6: Stationary waves and diffusions.

For both the wave eq. and the diffusion eq. if the solution doesn't actually depend on time then the time derivatives vanish and we're left with $\Delta u = u_{xx} + u_{yy} + u_{zz} = 0$ This is called the haplace eq. Solutions are