1.1 What are Partial Differential Equations?
$x, y, \ldots .$. independent variables. $u=u(x, y, \ldots)$.

A partial differential equation (PDE) is an equation hat relates $x, y, \ldots ., u(x, y, \ldots)$ and partial derivatives of n wr.r.t. x, y, \ldots

The order of a PDE is the highest derivative that appears.
1.3 Examples From the World Around ISs

Ex 1: Transport in 1D

Consider some function $u(x)$
 and suppose it waves at speed C to the right. Then now $u=n(x, t)$ and

$$
\begin{aligned}
& u=u(x, t) \text { and } \\
& M=\int_{0}^{b} u(x, t) d x=\int_{0+c h}^{b+c h} u(x, t+h) d x
\end{aligned}
$$

Differentiate wort. b to get

$$
\frac{\partial M}{\partial b}=u(b, t)=u(b+c h, t+h)
$$

Differentiating this w.r.t. h we get

$$
\begin{aligned}
\frac{\partial}{\partial h}\left(\frac{\partial M}{\partial b}\right) & =\frac{\partial}{\partial h}(u(b, t))=0 \\
& =\frac{\partial}{\partial h}(u(b+c h, t+h))=\frac{\partial u}{\partial x} \frac{\partial x}{\partial h}(b+c h)+\frac{\partial u}{\partial t} \frac{\partial t}{\partial h}(t+l) \\
& =u_{x}(b+c h, t+h) \cdot c+u_{t}(b+c h, t+h) \cdot 1
\end{aligned}
$$

Plugging in $h=0$ we have:

$$
u_{t}(b, t)+c u_{x}(b, t)=0
$$

Ex 2: Vibrating string.
 string, for horizontal a vertical parts separately.

Horizontal: $T(x, t) \cdot \cos \alpha-T\left(x_{0}, t\right) \cdot \cos \beta=0$

$$
\begin{aligned}
& \cos \alpha=\sqrt{1} \sqrt{1+u_{x}^{2}}\left(x_{1}, t\right) \quad \approx \frac{1}{1+\frac{1}{2} u_{x}^{2}\left(x_{1}, t\right)} \approx 1 \\
& \cos \beta=\frac{1}{\left.\sqrt{1+u_{x}^{2}\left(x_{0}\right.}, t\right)} \approx \frac{1}{1+\frac{1}{2} u_{x}^{2}\left(x_{0}, t\right)} \approx 1
\end{aligned}
$$

$$
\Longrightarrow \quad T\left(x_{0}, t\right)=T\left(x_{1}, t\right)
$$

So T is independent of x. We assume that it is also independent of t.

Vertical: $T(\sin \alpha-\sin \beta)=F=m a=\int_{x_{0}}^{x_{1}} \rho u_{t t}(x, t) d x$

$$
\sin \alpha=\frac{u_{x}\left(x_{1}, t\right)}{\sqrt{1+u_{x}^{2}\left(x_{1}, t\right)}} \approx u_{x}\left(x_{1}, t\right)
$$

$\sin \beta \approx u_{x}\left(x_{0}, t\right)$

$$
\rightarrow \quad T\left(u_{x}\left(x_{1}, t\right)-u_{x}\left(x_{0}, t\right)\right)=\int_{x_{0}}^{x_{1}} \rho u_{t t}(x, t) d x
$$

Replace $x_{1}=x_{0}+h$ and divide by h :

$$
T \quad \frac{u_{x}\left(x_{0}+h, t\right)-u_{x}\left(x_{0}, t\right)}{h}=\frac{1}{h} \int_{x_{0}}^{x_{0}+h} \rho u_{t t}(x, t) d x
$$

As $h \rightarrow 0$ we get:

$$
T u_{x x}=\rho u_{t t} \Rightarrow u_{t t}=c^{2} u_{x x}
$$

This is the wave equation, and C trues out to be the wave speed.

In 2D we get
BD

$$
\begin{aligned}
& u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right) \\
& u_{t t}=c^{2}\left(u_{x x}+u_{y y}+u_{z z}\right)
\end{aligned}
$$

Theorem: ("Vanishing theorem")
Let open $D_{0} \subset \mathbb{R}^{n} n \geqslant 1$, Lat $f: D_{0} \longrightarrow \mathbb{R}$ be contiunons satisfy ing $\iint_{D} f(\vec{x}) d \vec{x}=0$ for any open $D \subset D_{0}$.
Then f is identically O.

Ex 3: Vibrating drumhead.

Let $D_{0} \subset \mathbb{R}^{2}$ be open.
Supprile that the boundary of D_{0} is a frame holding a membrane (like a drum).
Let $u(x, y, t)$ denote the vertical displacement of the membrane
 at the point $(x, y) \in D_{0}$ at time $t \in \mathbb{R}$.

Let $D \subset D_{0}$ be un open subset (sometimes called domain). Let $\vec{T}(x, y, t)$ be the tension, and let $T(x, y, t)=\|\vec{T}(x, y, t)\|$ (magnitude). As bepre, the horizontal component guarantees that I dsesnit depend on (x, y), and we assume again thant if doesint depend on t. Similar to the 1D case, the vertical contribution is given by

$$
\int_{\partial D} T \frac{\partial u}{\partial n} d s=F=m a=\iint_{D} \rho u_{t t} d x d y
$$

where \hat{n} is the outward pointing unit nozunal vector to the boundary of D and $\frac{\partial u}{\partial n}=\hat{n} \cdot \nabla u$ is the directional derivative.

By Green's theorem (which is just the 2D version of the divergace theorem, aka Gins' Theorem)

$$
\iint_{D} \nabla \cdot(T \nabla u) d x d y=\iint_{D} \rho u_{t t} d x d y
$$

equivalently: $\quad \iint_{D}\left(\nabla \cdot(T \nabla u)-\rho u_{t t}\right) d x d y=0$
Since D is arbitrary, the vanishing theorem implies that

$$
\nabla \cdot(T \nabla u)-\rho u_{t t}=0
$$

and since T is constant we halle

$$
u_{t t}=c^{2} \nabla \cdot(\nabla u)=c^{2}\left(u_{x x}+u_{y y}\right)
$$

where, as before, $c=\sqrt{\frac{T}{\rho}}$. In 3D

$$
u_{t t}=c^{2}\left(u_{x x}+u_{y y}+u_{z z}\right)
$$

We denote $\Delta u=u_{x x}+u_{y y}+u_{z z}$

Ex 4: Diffusion.

Fluid is a tube, and dye differing in it. x_{1} The mass of the dee between x_{0}, x_{1} :

$$
\begin{aligned}
& M(t)=\int_{x_{0}}^{x_{1}} u(x, t) d x \\
& \frac{d M}{d t}=\int_{x_{0}}^{x_{1}} u_{t}(x, t) d x
\end{aligned}
$$

The mass can only charge if dye flows in or out of this section of the tube. So

$$
\frac{d M}{d t}=k u_{x}\left(x_{1}, t\right)-k u_{x}\left(x_{0}, t\right)
$$

(k is a constant that takes care of units)
So we have

$$
\int_{x_{0}}^{x_{1}} u_{t}(x, t) d x=k u_{x}\left(x_{1}, t\right)-k u_{x}\left(x_{0}, t\right)
$$

Again, letting $x_{1}=x_{0}+h$ and dividing by R, we find

$$
u_{t}=k u_{x x} .
$$

In $2 D$ we get

$$
3 D
$$

$$
\begin{aligned}
& u_{t}=k\left(u_{x x}+u_{y y}\right) \\
& u_{t}=k\left(u_{x x}+u_{y y}+u_{z z}\right)
\end{aligned}
$$

Using the notation $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\cdots \cdot$ we find the geveral form:

Wave: $\quad \partial_{t t} u=c^{2} \Delta u$
Diffusion: $\partial_{t} n=k \Delta u$

Ex 5: Heat four.
The diffusion eq, also describes heat flow. Read this.

Ex 6: Stationary wares and diffusbous.

For both the wave eq. and the diffusion eqif the solution doesitt actually depend on time then the time derivatives vanish and wore left with

$$
\Delta u=u_{x x}+u_{3 y}+u_{z z}=0
$$

This is called the Laplace eq. Solutions are Rearmonie functions.

