1.2 First-order hivears equations

The simplest PDEs have the form

$$
a u_{x}+b u_{y}=0 .
$$

a and b can be constant os can depend on the print (x, y). We start with the constant case:

Constant coefficient care:
Notice that

$$
\begin{aligned}
a u_{x}+b u_{y} & =\left(\begin{array}{ll}
a & \left.\frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right) u \\
& =(a \quad b)\binom{\partial / \partial x}{\partial / \partial y} u
\end{array}\right) . u \text {. }
\end{aligned}
$$

So we have a directional derivative in the direction (a, b). \& u is a solution if a derivative of n in this direction is 0 , i.e. n is constant alons these lines, called the characteristic lives of the equation.

What is the equation of these lines?
They have slope $\frac{b}{a}$, i.e. $\frac{d y}{d x}=\frac{b}{a}$ which means tRot

$$
\left.\begin{array}{rl}
y & =\frac{b}{a} x+c \\
a y & =b x+c a
\end{array}\right]
$$

So a solution u is constant along these lives:

$$
u(x, y)=f(b x-a y)
$$

Example: If $b=0$, wlo.g, $a=1$ so we have the PDE $u_{x}=0$, ie. u doesit change in the x direction, ie. u is only a function of y :

$$
u(x, y)=f(3)
$$

Car be cangthing: can be $y, y^{3}, y^{9}+50$ $\tan y, e^{y}+3 y+7 \ldots$

If we have the auxiliaity condition $n(0, y)=e^{y}$ then we find that also $n(x, y)=e^{3}$ is the solution.

Example: let $a=5, b=-2$ and consider the auxiliary condition $u(x, 0)=\cos x$.

$$
\begin{aligned}
& 5 u_{x}-2 u_{y}=0 \\
& n(x, y)=f(-2 x-5 y)
\end{aligned}
$$

 is the general solution.

$$
u(x, 0)=\cos x=f(-2 x)
$$

Substitute $u=-2 x \Longrightarrow f(w)=\cos \left(-\frac{w}{2}\right)$
Hence the solution is: $u(x, y)=\cos \left(x+\frac{5}{2} y\right)$

We em check:

$$
5 u_{x}-2 u_{y}=-5 \sin \left(x+\frac{5}{2} y\right)+2 \sin \left(x+\frac{5}{2} y\right) \cdot \frac{5}{\neq}=0
$$

Variable coefficient case:

We can also have use general eq. If the form

$$
a(x, y) u_{x}+b(x, y) u_{y}=0 .
$$

The se can be much more difficult to solve in general.

Strategy: Dis comes from the directional derivative

$$
a(x, y) \frac{\partial}{\partial x}+b(x, y) \frac{\partial}{\partial y}
$$

The hewacteristic curves are given by ore formula r

$$
\begin{aligned}
& -b(x, y) d x+a(x, y) d y=0 \\
& \Rightarrow \quad \frac{d y}{d x}=\frac{b(x, y)}{a(x, y)}
\end{aligned}
$$

If we can solve this by integrating, we find $y=y(x)$, so that $(x, y(x))$ is the characteristic curve end u is constant along these curves: $\quad u(x, y(x))=$ coust.

Example: Consider $u_{x}+\cos x u_{3}=0$.
We need to solve: $\frac{d y}{d x}=\frac{c u x}{1}$

$$
\Longrightarrow y=\int \cos x d x=\sin x+c
$$

Each value c will correspond to a diffenat carve, so we have

$$
u(x, y)=f(c)=f(y-\sin x)
$$

where f is cm y function.

Check:

$$
\begin{aligned}
u_{x} & =f^{\prime}(y-\sin x) \cdot \frac{\partial}{\partial x}(y-\sin x) \\
& =f^{\prime}(y-\sin x)(-\cos x) \\
u_{y} & =f^{\prime}(y-\sin x) \cdot \frac{\partial}{\partial u}(y-\sin x) \\
& =f^{\prime}(y-\sin x) \cdot 1
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow n_{x}+\cos x n_{y} & =-f^{\prime}(y-\sin x) \cos x+\cos x f^{\prime}(y-1 / x) \\
& =0
\end{aligned}
$$

If we are given the auxiliars conk $u(0,3)=y^{2}$ then we have $y^{2}=u(0, y)=f(y)$. So $f(c)=c^{2}$, and $u(x, y)=(y-\sin x)^{2}$

