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Chapter 1

Introduction

1.1 Definitions

A partial differential equation (PDE) is an equation involving one or more
partial derivatives of an unknown function of several variables. The PDE’s
order is the order of the highest-order derivative appearing in the equation.

What is a PDE?

The variables x, y, . . .denote independent spatial variables, whereas t denotes the time
variable (if there is one). The dependent variables are typically denoted by u(x, y, . . . , t),
v(x, y, . . . , t) and w(x, y, . . . , t). The explicit functional dependence will be sometimes
omitted for simplicity. The following notation will be used interchangeably to denote
partial derivatives

∂u
∂x
≡ ux,

∂u
∂y
≡ uy,

∂2u
∂x2 ≡ uxx,

∂2u
∂y2 ≡ uyy,

∂2u
∂x∂y

≡ uxy, . . .

as well as the usual symbol for the laplacian:

∆ :=
∂2

∂x2 +
∂2

∂y2 + · · ·

A PDE for a function u(x, y, . . . , t) has the general form

F(x, y, . . . , t; u,ux,uy, , . . . , ut,uxx,uxy,uyy, . . .) = 0.

The PDE is said to be:

Linear if F is algebraically linear in u and its partial derivatives and if the coefficients
of u and its partial derivatives are functions of the independent variables only.

Semilinear if it is algebraically linear with respect to the highest derivatives and the
coefficients of the highest derivatives depend on the independent variables only.
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Quasilinear if it is algebraically linear with respect to the highest derivatives, but their
coefficients may depend on lower derivatives as well as independent variables.

Nonlinear if it is none of the above.
Exercise 1.1: For each of the following PDEs state (i) the order of the PDE (ii) whether it is linear, semilinear, quasilinear or
nonlinear.

(a) ut + uux = 0 (b) (a2
− φ2

x)φxx − 2φxφyφxy + (a2
− φ2

y)φyy = 0

(c) u2
x + u2

y = 1 (d) uxx = xuyy (e) ut + uux = uxx

The independent variables, denoted x = (x, y, . . .) for brevity, belong to the domain
of the PDE, defined as follows:

Steady-state problems

The domain, Ω, of a PDE of n spatial variables is a non-empty, open subset of
Rn. The domain Ω can be bounded or unbounded.

The boundary of Ω is denoted by ∂Ω.

The closure of Ω, is denoted by Ω̄ and is the closed set defined as Ω̄ = Ω∪∂Ω.

Time-dependent problems

If, in addition, a time variable is present, the domain of the PDE is an open
subset of Rn+1 defined as:

G = Ω × (0,+∞) = {(x, t) : x ∈ Ω and t > 0}.
A PDE defined on a bounded time interval is also possible, albeit less common.

Domain of a PDE

1.2 Vector space structure

Given a PDE F(x, y, . . . ; u,ux,uy, . . .) = 0, the associated operator is the map-
ping L that maps u to the part of F involving u.

An operator L is said to be linear if L(u + v) = L(u) +L(v) and L(au) = aL(u)
for any functions u, v, and for any constant a.

Let L be a linear operator. The equation

Lu = 0

is called a homogeneous linear equation. An equation of the form

Lu = g

where g , 0 is called an inhomogeneous linear equation.

Operators
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Exercise 1.2: For each of the following PDEs find (i) the associated operator (ii) whether it is linear or nonlinear and (iii) whether
it is homogeneous or inhomogeneous.

(a) utt = c2uxx (b) utt = c2uxx + f (x, t)

(c) u2
x + u2

y = 1 (d) uxx = xuyy (e) ut + uux = uxx

We observe that solutions admit a vector space structure: for a linear operator L,
if the functions {ui}

n
i=1 solve the equation Lu = 0, then also L(

∑n
i=1 aiui) = 0 for any

constants ai, i = 1, . . . ,n. Moreover, if v solves Lv = g and u solves Lu = 0, then
u + v solves L(u + v) = g. Hence, by solving the homogeneous equation we can find
infinitely more solutions to an inhomogeneous equation.

1.3 Classification of second-order linear PDEs in two in-
dependent variables

Consider the general second-order linear PDE in the dependent variable u and the
independent variables x and y,

auxx + buxy + cuyy + dux + euy + f u = g, (1.1)

where a, b, c, d, e, f and g are functions of x and y only which belong to C2(Ω), with
Ω ⊂ R2. We also require that a, b and c do not vanish simultaneously at any point in Ω.

Remark: Here, the variables ‘x′ and ‘y′ don’t necessarily have to be spatial variables.
For instance, one of them could be a time variable.

The classification of PDEs is suggested by the corresponding classification of the
quadratic equation of conic sections in analytic geometry. For example, the equation

ax2 + bxy + cy2 + dx + ey + f = 0

represents a hyperbola, parabola or ellipse, depending on whether the discriminant
D = b2

− 4ac is positive, zero or negative, respectively. Likewise, if we consider the
discriminant of (1.1) at some point (x0, y0) ∈ Ω,

D(x0, y0) = b2(x0, y0) − 4a(x0, y0)c(x0, y0),

then the PDE is said to be

• hyperbolic at (x0, y0), if D(x0, y0) > 0,

• parabolic at (x0, y0), if D(x0, y0) = 0,

• elliptic at (x0, y0), if D(x0, y0) < 0.

If any of the above is true for every point in Ω, then the equation is said to be hyperbolic,
parabolic, or elliptic in a domain (Ω). In the same manner, we can also classify all
semilinear PDEs of the form auxx +buxy +cuyy +F(x, y; u,ux,uy) = 0, where F is arbitrary.

Exercise 1.3: Determine the type of the following PDEs

(a) 3uxx + 2uxy + 5uyy + xuy = 0

(b) uxx = xuyy

(c) 3uxx + uyy + 4uzz + 4uzy = ux
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1.4 Auxiliary Conditions

The PDEs that model physical systems typically have infinitely many solutions. To find
the single function that is the solution to the physical problem, one needs to impose a
set of auxiliary conditions. These conditions can be of two types:

Boundary Conditions (BCs) These are conditions that hold at points on ∂Ω.
Commonly the following types of conditions are used

Dirichlet condition u = f

Neumann (or flux) condition
∂u
∂n

= g

Robin (or mixed or radiation) condition αu + β
∂u
∂n

= g

for some given functions α, β, f and g defined on ∂Ω.

Initial Conditions (ICs) These are conditions that are used in time-dependent
problems and specify u and its time derivatives at some initial time,
typically at t = 0. Such conditions are also called Cauchy conditions.

Auxiliary conditions

Problems that are time-independent are called boundary value problems (BVP); oth-
erwise they are called initial-boundary value problems (IBVP).

1.5 Classical solution

Given the PDE and its domain, together with the appropriate auxiliary conditions, we
would like to characterise its solution (if it exists). This gives rise to the notion of a
classical solution defined as follows:

Consider a PDE of order k in n independent variables in an open subset G ofRn

together with auxiliary conditions applied along ∂G. The function u : Rn
→ R

is said to be a classical solution to the problem if
1. u satisfies the PDE and auxiliary conditions pointwise for every point in

the region where the problem is defined.

2. u ∈ Ck(G).

3. continuity ‘extends’ to the boundary of the domain ∂G. For example,
for problem with Dirichlet conditions we need to have u ∈ C0(G); for a
problem with Neumann conditions we need to have u ∈ C1(G).

Classical Solution
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From the above, it is clear that a classical solution has certain smoothness requirements.
Quite frequently, however, solutions may not exist in this (classical) sense and one
needs to relax the smoothness conditions to find a solution; thus weak solutions or
their derivatives are allowed to exhibit discontinuities in some or all points in G.

1.6 Well-posedness

A problem in PDEs is not guaranteed to have a solution, or, if does have a solution
it is not guaranteed to be unique. According to the classical definition of Hadamard,
a problem described by a PDE in a given domain together with a set of auxiliary
conditions is said to be well-posed if the solution

1. exists,

2. is unique,

3. is stable (i.e. it depends continuously on the data1).

More specifically, note the following:

existence of the solution, means that it is possible to find at least one solution. This is
typically harder to to establish theoretically. The most satisfactory way to show
that a solution exists is to construct it.

uniqueness of the solution, means that with the given conditions we are able to find
at most one solution.

stability of the solution, means that small perturbations in the data results in small
perturbations in the solution.

If any of the above conditions is not satisfied, then the problem is said to be ill-posed.

EXAMPLE 1.1: The following problem is due to Hadamard: Consider the initial-
value problem for the Laplace equation

∆ u = 0, 0 < y < ∞, x ∈ R.

with the Cauchy data

u(x, 0) = 0 and uy(x, 0) =
sin mx

m
,

where m is an integer representing the wavenumber. These data tend to zero uniformly
as m→∞. It can be easily verified (more about this later in the module) that

u(x, y) =
sinh my sin mx

m2

is the unique solution to the problem. Is this problem well-posed?

1The data of the problem corresponds to the inhomogeneous term in the PDE together with the
prescribed functions in the initial and boundary conditions.
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SOLUTION
The problem

∆ u = 0, 0 < y < ∞, x ∈ R.

with the Cauchy data
u(x, 0) = 0 and uy(x, 0) = 0,

has a unique solution u(x, y) ≡ 0. The solution to the original problem represents
oscillations in x with unbounded amplitude m−2 sinh my, which tends to infinity as
m→ ∞. In other words, even though the data tends to zero uniformly as m→ ∞, the
solution itself does not tend to the solution u(x, y) ≡ 0, as it should.

In this sense, the solution is unstable since u(x, y) → ∞ as m → ∞ for any fixed
point (x, y) such that y > 0. Hence the problem is ill-posed. �
Exercise 1.4: Consider the following problems:

(a) uxx = 0 for 0 < x < 1 with BCs ux(1) = 1 and ux(0) = 0.

(b) uxy = 0 in Ω = (0,∞) × (0,∞) with BCs u(x, 0) = x and u(0, y) = y.

(c) ∆ u = 0 in some open Ω ⊂ R3 with ∂u/∂n = c along ∂Ω, where c is a constant. (Hint: use the divergence theorem)

In each case, discuss the well-posedness of the problem in terms of the existence, uniqueness and stability of their solution(s) (if
they exist). When discussing stability, only consider perturbations to the BC; do not add an inhomogeneous term in the PDE.

1.7 Some basic linear PDEs and their applications

1.7.1 The heat equation (also known as the diffusion equation)

Consider the conduction of heat in a one-dimensional rod (a thin cylinder with its
cylindrical surface insulated). Let L be the length of the rod, A the cross sectional area
of the rod (assumed constant) and u(x, t) the temperature of the rod at location x and
time t.

ϕ(x1, t) ϕ(x2, t)

x2x1

Focusing on a short segment of the rod located between x1 and x2, we have that the
total internal energy within the rod is given by∫ x2

x1

E(x, t) dx,

where E(x, t) corresponds to the heat energy per unit length. It is related to the tem-
perature through the linear relation

E(x, t) = c(x)ρ(x)u(x, t)A

which reflects the fact that the change in the internal energy corresponds to the change
in temperature (here u(x, t) is measured in relation to the absolute zero temperature).
Here ρ(x) is the mass density of the rod and c(x) is the specific heat which corresponds
to the energy required to raise the temperature of one unit of mass by one unit.
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To set up the model, we invoke the conservation of energy which says that
Change of

internal energy

in time δt

 =


heat flow

across the body

in time δt

 +


heat produced/removed

in time δt

by external factors


This is expressed mathematically as∫ x2

x1

E(x, t + δt) dx −
∫ x2

x1

E(x, t) dx =
[
ϕ(x1, t) − ϕ(x2, t)

]
Aδt + δt

∫ x2

x1

q(x, t)A dx

= −Aδt
∫ x2

x1

ϕx(x, t) dx + Aδt
∫ x2

x1

q(x, t) dx,

where ϕ(x, t) is the heat flux (heat energy per unit area) and q(x, t) represents the
external heat sources or sinks. After some term re-arrangement we find∫ x2

x1

[
c(x)ρ(x)

u(x, t + δt) − u(x, t)
δt

+ ϕx(x, t) − q(x, t)
]

dx = 0

Taking the limit δt→ 0 and the arbitrariness of x1 and x2 yield

c(x)ρ(x)ut(x, t) + ϕx(x, t) = q(x, t) for 0 < x < L and t > 0. (1.2)

To continue, we invoke the so-called Fourier’s law of heat conduction which relates
the heat flux with the temperature gradient

ϕ(x, t) = −K(x)ux(x, t),

where K(x) is the thermal conductivity, so that (1.2) becomes

c(x)ρ(x)ut(x, t) = (K(x)ux(x, t))x + q(x, t) for 0 < x < L and t > 0. (1.3)

If c(x), ρ(x) and K(x) are assumed to be constants and there are no heat sources (i.e.
q(x, t) ≡ 0), (1.3) becomes

ut = κuxx for 0 < x < L and t > 0, (1.4)

where κ = K/(cρ) is the thermal diffusivity of the rod. Equation (1.4) is called the heat
equation.

Remarks

• The heat equation (1.4) is a prototypical example of a parabolic PDE.

• This equation is first-order in time and second-order in space. To solve it, we
need to impose one initial condition, i.e. u(x, 0) which corresponds to the initial
temperature distribution and two boundary conditions.

• For the boundary conditions there can be three physically meaningful boundary
conditions at an endpoint x = a, where a is either 0 or L:
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1. The Dirichlet condition

u(a, t) = g(t), t > 0

fixes the temperature at x = a.

2. The Neumann condition

ux(a, t) = f (t), t > 0

prescribes the heat flux through x = a. If f (t) ≡ 0 means that the rod is
insulated at x = a (no heat flux).

3. The Robin condition

±K0ux(a, t) = H [u(a, t) −U(t)] , t > 0

is used to model the heat transfer occurring by bringing the endpoint in
contact with another medium, where U(t) is the (known) temperature of the
medium and H > 0 is the heat transfer coefficient. Due to the convention
used for the heat flux, we use the ‘+’ sign when a = 0 and the ‘−’ sign when
a = L.

4. Only one boundary condition can be prescribed at each endpoint; the con-
ditions need not be identical (e.g. one end might be insulated whereas the
other kept at constant temperature).

1.7.2 Laplace’s equation

The considerations in the previous section may be generalised to higher dimensions.
For simplicity we will only look at the two-dimensional case. In this case (1.3) may
be generalised to give the temperature distribution u(x, y, t) of a heat-conducting body
occupying a region Ω of the (x, y)-plane:

c(x, y)ρ(x, y)ut(x, y, t) = ∇ ·
[
K(x, y)∇u(x, y, t)

]
+ q(x, y, t) in Ω. (1.5)

If c = ρ ≡ 1 and K is assumed to be constant in Ω (1.5) becomes

ut(x, y, t) = K ∆ u(x, y, t) + q(x, y, t) in Ω. (1.6)

Equation (1.6) is the two-dimensional heat equation with external heat sources (or
sinks).

If q(x, y, t) and the boundary conditions attain a steady-state as t→∞, (1.6) reaches
an equilibrium temperature, which satisfies an equation of the form

∆ u(x, y) = g(x, y) in Ω, (1.7)

where we set g(x, y) = −K−1 limt→∞ q(x, y, t). Equation (1.7) is called the Poisson
equation. When we take q(x, y) ≡ 0, the PDE

∆ u(x, y) = 0 in Ω (1.8)

is called the Laplace equation.
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Remarks

• The Laplace equation is a prototypical example of an elliptic PDE.

• The Laplace and Poisson equations arise in different contexts. In electrostatics,
the solution to the Poisson equation (1.7) gives the electrostatic potential u(x, y)
with g(x, y) = −ρ(x, y)/ε0, where ρ(x, y) is the prescribed charge density and ε0
is the vacuum permitivity; in non-viscous fluid dynamics the Laplace equation
∆φ = 0 gives the velocity potential φ(x, y), from which one can deduce the
velocity of the fluid on the (x, y)-plane as

v(x, y) = φx(x, y)i + φy(x, y)j.

1.7.3 The wave equation
Consider the motion of a tightly stretched elastic string of length L, mass density (mass
per unit length) ρ(x) under the influence of a vertical body force q(x, t) per unit mass.
We would like to develop a model for the vertical displacement of the string, u(x, t),
under the assumption that the horizontal displacement of the string is negligible.

θ(x, t)

θ(x + δx, t)

F(x, t)

F(x + δx, t)

x + δxx

u(x, t)

u(x + δx, t)

Focusing on a small segment of the string between points x and x + δx, consider
Newton’s second law along the vertical direction

{force} = {mass} × {acceleration}

so that we have approximately

ρ(x) δx︸ ︷︷ ︸
mass

utt(x, t) ≈ F(x + δx, t) sinθ(x + δx, t) − F(x, t) sinθ(x, t) + ρ(x) δx q(x, t).

If we divide through by δx and let δx→ 0 we find

ρ(x)utt(x, t) = [F(x, t) sinθ(x, t)]x + ρ(x)q(x, t),
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For small, θ we can use the approximation

ux = tanθ ≈ θ ≈ sinθ,

so that
ρ(x)utt(x, t) = [F(x, t)ux(x, t)]x + ρ(x)q(x, t), (1.9)

For homogeneous (i.e. ρ(x) = ρ0 = const.) and perfectly elastic strings (i.e. we may
take F(x, t) = F0 = const.), (1.9) becomes

utt(x, t) = c2uxx(x, t) + q(x, t), (1.10)

where c2 = F0/ρ0 has dimensions of velocity. If, the body force is assumed to be
negligible compared to the string tension so that we take q(x, t) ≡ 0, (1.10) becomes

utt(x, t) = c2uxx(x, t). (1.11)

Equation (1.11) is called the one-dimensional wave equation and the constant c is the
wave speed.

Remarks

• The wave equation is a prototypical example of a hyperbolic PDE

• This equation is second-order in time and second-order in space. To solve it, we
need to impose two initial conditions (the initial position and velocity of points
in the string, i.e. u(x, 0) and ut(x, 0), respectively) and two boundary conditions.

• As in the case of the heat equation, there are three physically meaningful possible
boundary conditions at an endpoint x = a, where a is either 0 or L:

1. The Dirichlet condition

u(a, t) = g(t), t > 0

prescribes the displacement at x = a.

2. The Neumann condition

ux(a, t) = 0, t > 0

is used when the endpoint is free (no vertical tension).

3. The Robin condition

±F0ux(a, t) = ku(a, t), t > 0

is used to model the case when the endpoint has an elastic attachment. We
use the ‘+’ sign when a = 0 and the ‘−’ sign when a = L.

4. Only one boundary condition can be prescribed at each endpoint; the con-
ditions need not be identical (e.g. one end might be free to move whereas
the other may be kept fixed at all times).
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1.7.4 Other linear equations

Brownian motion / Convection-Diffusion problems

The PDE for u(x, y, t)
ut = a ∆ u − v · ∇u, (1.12)

where a is constant corresponding to the diffusion coefficient and v is a constant vector
that measures the drift velocity. This PDE may be used in different contexts:

Brownian motion: to describe the probability density function of the velocity of a
particle at a point (x, y) at at time t, as it undergoes two-dimensional random
motion in a fluid. In this context, (1.12) is a simplified version of the Fokker–
Planck equation.

Convection-diffusion: to describe physical phenomena where particles, energy, or
other physical quantities are transferred inside a physical system due to diffusion
and convection. For example, in heat transfer u(x, y, t) in (1.12) is used to denote
the temperature field; in mass transfer u(x, y, t) may denote, for example, the
species concentration.

It is easy to verify that (1.12) is a parabolic PDE; for the steady-state problem (ut ≡ 0),
(1.12) is an elliptic PDE.

Stock market prices

The price V(s, t) of a derivative on the stock market2 depends on the stock price s and
time t in years and is found by solving the so-called Black-Scholes equation

Vt +
1
2
σ2s2Vss + rsVs − rV = 0

where σ is the standard deviation of the stock returns and r is the annualised risk-free
interest rate.

Quantum mechanics

In quantum mechanics, linear PDEs are used to describe the quantum state of a moving
particle by the determining the associated wavefunction ψ(x, y, t).

Non-relativistic quantum mechanics: in this case, the wavefunction satisfies the para-
bolic Schrödinger equation

i}ψt(x, y, t) = −
}2

2m
∆ψ(x, y, t) + V(x, y, t)ψ(x, y, t),

where V(x, y, t) is an applied potential, m is the mass of the particle, } is the
reduced Planck constant and i2 = −1.

2Derivatives in finance correspond to contracts whose value is determined/derived by other financial
instruments.
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Relativistic quantum mechanics: here the wavefunction satisfies the (hyperbolic) Klein-
Gordon equation

ψtt(x, y, t) = c2 ∆ψ(x, y, t) −
m2c4

}2 ψ(x, y, t),

where c is the speed of light.

Wave propagation

The second-order hyperbolic PDE of the from

utt(x, t) + aut(x, t) + bu(x, t) = c2uxx(x, t) − dux(x, t), (1.13)

where a, b, d ≥ 0 are not all zero and c > 0 are used in different settings to study wave
propagation. For example

Lossy transmission lines: The current and voltage in the propagation of signals is
studied with the help of (1.13) in the case when d = 0. The remaining constants
a, b and c are expressed in terms of the resistance, capacitance, conductance
and inductance characterising the transmission line. This equation is called the
telegrapher’s equation.

Dissipative wave dynamics: The more general equation (1.13) is used to study waves
that dissipate as they propagate. Note that we recover the (non-dissipative) wave
equation, (1.11), if we set a = b = d = 0.

Wave scattering

The Helmholtz equation
∆ u(x, y, z) + k2u(x, y, z) = 0

where k = const. plays an important role in the study of scatttering of acoustic, electro-
magnetic and elastic waves. It is a second-order elliptic PDE and arises by considering
the three-dimensional wave equation

vtt(x, y, z, t) = ∆ v(x, y, z, t),

and seeking solutions of the form

v(x, y, z, t) = u(x, y, z)eikt.

Transverse vibrations of a rod

The deflection of u(x, t) of a point x in the rod at time t satisfies the fourth-order PDE:

utt(x, t) + c2uxxxx(x, t) = 0.

where c is a constant associated with the rigidity of the rod.
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The two-dimensional biharmonic equation

The biharmonic equation

∆2ψ(x, y) = ψxxxx(x, y) + 2ψxxyy(x, y) + ψyyyy(x, y) = 0

(also written ∇4ψ = 0 sometimes) is a fundamental equation in continuum mechanics.
In plane elasticity, ψ(x, y) denotes the so-called Airy stress function; in the slow viscous
flow of an incompressible fluid (also called Stokes flow) ψ(x, y) corresponds to the
stream function of the flow, with the velocity vector given by

v(x, y) = ψy(x, y)i − ψx(x, y)j.

Plane transonic flow

The transonic flow of a compressible gas is described by the Euler-Tricomi equation

uxx(x, y) = xuyy(x, y)

where u(x, y) is the speed of the flow.

1.8 Review

• Distinguish between

– Linear, semilinear, quasilinear and nonlinear PDEs;

– Parabolic, Elliptic and Hyperbolic PDEs;

– Boundary (Dirichlet, Neumann and Robin) and initial conditions;

– Classical and weak solutions;

• Classify second-order PDEs using the discriminant method;

• Obtain general solutions to simple PDEs;

• Define what it means for a problem to be well-posed;

• Identify the three fundamental second-order PDEs (heat, Laplace and
wave equations) and the physical interpretation of the Dirichlet and
Neumann boundary conditions.

Can you do the following?
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Chapter 2

The Heat (Diffusion) Equation on R

The heat equation (also known as the diffusion equation) in one spatial dimension is
given by

ut(x, t) − κuxx(x, t) = 0 for −∞ < x < +∞ and t > 0, (2.1)

where κ > 0 is a constant capturing physical properties of the problem at hand (see
(1.4)). This equation can be written with d ∈ N spatial variables as well, where ∂xx is
replaced by the Laplacian ∆ and the equation becomes

ut(x, t) − κ∆u(x, t) = 0 for x ∈ Rd and t > 0,

however here we concentrate on the one-dimensional case for simplicity, as it already
exhibits all the interesting aspects of the heat equation.

The goal of this section is to obtain an explicit expression for the solution of the
inhomogeneous Dirichlet problem{

ut − κuxx = f in (x, t) ∈ R × (0,+∞),
u = g on (x, t) ∈ R × {t = 0},

where f and g must satisfy some regularity conditions. The explicit expression we
obtain (see (2.5) below) shows that there exists a solution. Moreover, from the explicit
expression it is not hard to also see that it is stable: ‘small’ changes in f and g induce
‘small’ changes in the solution. It is possible to also show that the solution is unique
among ‘nice’1 solutions (there exist other, ‘bad’ solutions). Hence (within the class of
‘good’ solutions) this is a well-posed problem.

1‘Nice’ solutions are solutions that do not grow too fast as |x| → +∞.
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2.1 The Fundamental Solution

The function

Φ(x, t) =

 1
2
√
πκt

e−
x2
4κt −∞ < x < +∞ and t > 0,

0 −∞ < x < +∞ and t < 0,

is called the fundamental solution of the heat equation. It is also known as
the heat kernel. It is an example of a positive summability kernel.

The Fundamental Solution

Lemma 2.1: The fundamental solution Φ satisfies∫
∞

−∞

Φ(x, t) dx = 1 for all t > 0,

and for any δ > 0 ∫
|x|>δ

Φ(x, t) dx→ 0 as t ↓ 0.

Proof. This is a simple calculation:∫
∞

−∞

Φ(x, t) dx =
1

2
√
πκt

∫
∞

−∞

e−
x2
4κt dx

=
1
√
π

∫
∞

−∞

e−q2
dq

= 1.

The second part is left as an exercise. �

Lemma 2.2: For any t > 0, the fundamental solution Φ is a solution of (2.1).

Proof. The proof is left as a simple exercise. �

Exercise 2.1: (a) Prove that 1
√
π

∫
∞

−∞
e−q2

dq = 1 (Hint: square it).

(b) Prove the second part of Lemma 2.1.

(c) Prove Lemma 2.2.

The fundamental solution Φ is therefore a function that always has area 1 under its
graph, for any time t > 0. In Figure 2.1 we see the general behavior of Φ: for small
times it is concentrated around x = 0, whereas for large times it spreads.
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Figure 2.1: The function Φ(x, t) at different times. Notice that as t ↓ 0, Φ(·, t) becomes
more concentrated near x = 0.

The δ distribution (due to physicist Paul Dirac) is often thought of as a ‘func-
tion’ satisfying δ(x) = 0 for all x , 0 and δ(0) = +∞. Its usefulness is when
integrating it against continuous functions:

∫
∞

−∞
δ(x) f (x) dx = f (0). It is easier

to understand this object via smooth functions that approximate it. These are
called positive summability kernels, of which the heat kernel is a prime example.

The heat kernel Φ approximates the δ distribution:

Φ(·, t)→ δ in the sense of distributions as t ↓ 0.

This is a rigorous way to express what is evident from Figure 2.1: as t ↓ 0,
Φ(·, t) becomes ever more concentrated around 0, while always maintaining
area 1 under its graph.

Approximation of the Dirac δ distribution

Proof. The theory of distributions is beyond the scope of this course. This is left as an
exercise (essentially an exercise in integration by parts). Alternatively, see F. John, Par-
tial Differential Equations, Fourth Edition, Chapter 3.6 or W. A. Strauss, Partial Differential
Equations: An Introduction, Second Edition, Chapter 12.1. �

The heat kernel has a critical physical interpretation. Taking κ = 1
2 , the

fundamental solution for t > 0 beomes Φ(x, t) = 1
√

2πt
e−

x2
2t which is precisely

the probability density function corresponding to a one-dimensional brownian
motion which starts at x = 0 at time t = 0. See W. A. Strauss, Partial Differential
Equations: An Introduction, Second Edition, Chapter 2.4 for further discussion.

Brownian Motion
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2.2 The Initial-Value Problem

We now wish to solve the initial-value (Cauchy) problem:{
ut − κuxx = 0 in (x, t) ∈ R × (0,+∞),

u = g on (x, t) ∈ R × {t = 0}.

As the next theorem shows, the fundamental solution is the key: it gives us a solution
for all t > 0 in terms of the initial condition g. The tricky part is to show that as t ↓ 0, u
indeed converges to g.

Theorem 2.3: Let g ∈ C0(R) ∩ L∞(R). Then the function u : R × (0,+∞)→ R defined
as

u(x, t) := Φ(·, t) ∗x g(·) =

∫
∞

−∞

Φ(x − y, t)g(y) dy (2.2)

is a C∞ solution of (2.1) and satisfies

lim
t↓0

u(ξ, t) = g(ξ) for every ξ ∈ R.

Proof. The function u is defined as the convolution of an infinitely-differentiable func-
tion and a bounded function, and is therefore infinitely-differentiable itself. Plugging
the expression for u into the equation (2.1) we find

ut − κuxx =

∫
∞

−∞

[Φt − κΦxx] (x − y, t)g(y) dy

= 0 for all x ∈ R and t > 0

due to Lemma 2.2.
It remains to show the limit as t ↓ 0. Since for small t > 0 the function Φ is

concentrated around 0, we shall break up the integral appearing in (2.2) into two parts:
one near ξ and the other away from ξ. Fix ξ ∈ R and ε > 0. Choose δ > 0 such that

|g(y) − g(ξ)| < ε if y ∈ R is such that |y − ξ| < δ.

Exercise 2.2: Why does there exist such a δ?

Then we compute the difference

|u(ξ, t) − g(ξ)| =
∣∣∣∣∣∫ ∞

−∞

Φ(ξ − y, t)g(y) dy − g(ξ)
∣∣∣∣∣

=

∣∣∣∣∣∫ ∞

−∞

Φ(ξ − y, t)(g(y) − g(ξ)) dy
∣∣∣∣∣

≤

∣∣∣∣∣∣
∫
|ξ−y|<δ

Φ(ξ − y, t)(g(y) − g(ξ)) dy

∣∣∣∣∣∣︸                                         ︷︷                                         ︸
I1

+

∣∣∣∣∣∣
∫
|ξ−y|>δ

Φ(ξ − y, t)(g(y) − g(ξ)) dy

∣∣∣∣∣∣︸                                         ︷︷                                         ︸
I2

.

Exercise 2.3: Can you explain the second equality?

From Lemma 2.1 we know that I2 → 0 as t ↓ 0. From our choice of δ we know that
I1 < ε. Since this is true for any ε > 0, we conclude that limt↓0 u(ξ, t) = g(ξ). �
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Remark: Observe that the only place where the continuity of g was used was in
showing that limt↓0 u(ξ, t) = g(ξ). We could have removed the requirement that g
is continuous, in which case the statement that limt↓0 u(ξ, t) = g(ξ) would only hold
at points of continuity of g. However it would still hold that the solution is C∞ in
R× (0,+∞), which is a remarkable fact: any discontinuities in the initial condition will
immediately be smoothed and become infinitely differentiable!

2.3 The Inhomogeneous Problem

We now wish to solve the inhomogeneous problem{
ut − κuxx = f in (x, t) ∈ R × (0,+∞),

u = 0 on (x, t) ∈ R × {t = 0}.
(2.3)

The solution to (2.3) can be built from f by taking a convolution in space and
time. The resulting expression is

u(x, t) = Φ ∗x,t f =

∫ t

0

∫
∞

−∞

Φ(x − y, t − s) f (y, s) dy ds. (2.4)

Duhamel’s Principle

Theorem 2.4: Assume that f is a compactly supported function such that f , fx, fxx, ft
are all continuous in R × [0,+∞). Then u defined as in (2.4) is a classical solution:

(a) u,ux,uxx,ut are all continuous in R × (0,+∞);

(b) u satisfies the equation ut − κuxx = f in R × (0,+∞);

(c) limt↓0 u(ξ, t) = 0 for every ξ ∈ R.

Proof. Recall that Φ approximates the δ distribution; consequently, Φ is singular at (0, 0)
and one must be cautious when trying to take derivatives of the expression for u. We
circumvent this by recalling that the convolution is commutative, so that we can write

u(x, t) =

∫ t

0

∫
∞

−∞

Φ(y, s) f (x − y, t − s) dy ds.

Recalling the definition of a derivative, we first write the finite difference

u(x + h, t) − u(x, t)
h

=

∫ t

0

∫
∞

−∞

Φ(y, s)
f (x + h − y, t − s) − f (x − y, t − s)

h
dy ds.

Now, since f has compact support and both f and fx are continuous in R× [0,+∞) we
have that

f (x + h − y, t − s) − f (x − y, t − s)
h

→ fx(x − y, t − s)
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uniformly in R × [0,+∞) as h → 0. Consequently, we can take the limit inside the
integral, and we obtain

ux(x, t) =

∫ t

0

∫
∞

−∞

Φ(y, s) fx(x − y, t − s) dy ds.

Similar reasoning leads to

uxx(x, t) =

∫ t

0

∫
∞

−∞

Φ(y, s) fxx(x − y, t − s) dy ds.

For the t derivative we also have to differentiate the outer integral, which leads to

ut(x, t) =

∫ t

0

∫
∞

−∞

Φ(y, s) ft(x − y, t − s) dy ds

+

∫
∞

−∞

Φ(y, t) f (x − y, 0) dy.

This concludes the proof of (a). To prove part (b) we proceed by writing the expression
ut − κuxx with the hope of finding that it equals f :

ut − κuxx =

∫ t

0

∫
∞

−∞

Φ(y, s)( ft − κ fxx)(x − y, t − s) dy ds︸                                                    ︷︷                                                    ︸
I

+

∫
∞

−∞

Φ(y, t) f (x − y, 0) dy︸                          ︷︷                          ︸
K

.

We would like to integrate the term I by parts since we know that Φ satisfies the
homogeneous heat equation; however the singularity of Φ at (0, 0) is a problem. So we
split the time integral into a ‘bad’ part (near 0) and a ‘good’ part (away from 0):

I =

∫ ε

0

∫
∞

−∞

Φ(y, s)( ft − κ fxx)(x − y, t − s) dy ds

+

∫ t

ε

∫
∞

−∞

Φ(y, s)( ft − κ fxx)(x − y, t − s) dy ds =: IBad + IGood.

The bad term is small:

|IBad| =

∣∣∣∣∣∫ ε

0

∫
∞

−∞

Φ(y, s)( ft − κ fxx)(x − y, t − s) dy ds
∣∣∣∣∣

=

∣∣∣∣∣∫ ε

0

∫
∞

−∞

Φ(y, s)(− fs − κ fyy)(x − y, t − s) dy ds
∣∣∣∣∣

≤
(
‖ ft‖L∞ + κ‖ fxx‖L∞

) ∫ ε

0

∫
∞

−∞

Φ(y, s) dy ds

≤Cε.

The good term can be integrated by parts safely, and we can use the fact that Φ satisfies

2 – 22



the homogeneous heat equation:

IGood =

∫ t

ε

∫
∞

−∞

Φ(y, s)(− fs − κ fyy)(x − y, t − s) dy ds

=

∫ t

ε

∫
∞

−∞

(
Φs − κΦyy

)
(y, s) f (x − y, t − s) dy ds

+

∫
∞

−∞

Φ(y, ε) f (x − y, t − ε) dy

−

∫
∞

−∞

Φ(y, t) f (x − y, 0) dy

=

∫
∞

−∞

Φ(y, ε) f (x − y, t − ε) dy − K,

where we recall that K was defined above already. We finally conclude that

ut − κuxx = lim
ε→0

∫
∞

−∞

Φ(y, ε) f (x − y, t − ε) dy = f (x, t)

where the limit follows an argument similar to the one appearing in the proof of
Theorem 2.3. Part (c) follows trivially directly from (2.4): ‖u(·, t)‖L∞ ≤ t‖ f ‖L∞ which
tends to 0 as t ↓ 0. �

Exercise 2.4: Can you show the last limit above (where ε→ 0)?

2.4 The Inhomogeneous Initial-Value Problem

By the vector-space structure, it follows that the solution to{
ut − κuxx = f in (x, t) ∈ R × (0,+∞),

u = g on (x, t) ∈ R × {t = 0}.

(where f and g satisfy the same hypotheses as above) is given by

u(x, t) = Φ(·, t) ∗x g + Φ ∗x,t f . (2.5)

2.5 Uniqueness of Solutions

The uniqueness of solutions of (2.1) is not as straightforward as may seem. It turns out
that the explicit solution (2.5) is not unique. It is, however, the unique physical solution.

Proposition 2.5: The initial value problem{
ut − κuxx = 0 in (x, t) ∈ R × (0,+∞),

u = 0 on (x, t) ∈ R × {t = 0},

has infinitely many solutions that are infinitely differentiable in both x and t (for all t,
including t < 0) which vanish identically for t < 0.
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Proof. We first note that this problem has one obvious solution: the trivial solution
u ≡ 0. That is also the physical solution. However, as we shall now see, there are
non-physical solutions. The starting point is to obtain formal solutions, and then justify
their validity rigorously. The proof is split into several steps.

1. A formal expression. For simplicity we take κ = 1. Write

u(x, t) =

∞∑
j=0

h j(t)x j (2.6)

for some functions h j, to be determined shortly. Formally, we have

ut =

∞∑
j=0

h′j(t)x
j and uxx =

∞∑
j=0

( j + 2)( j + 1)h j+2(t)x j

which leads to

h0 = h, h1 = 0, h′j(t) = ( j + 2)( j + 1)h j+2(t) for j = 0, 1, . . .

where h is some function. Plugging this into (2.6) we find

u(x, t) =

∞∑
j=0

h( j)(t)
(2 j)!

x2 j. (2.7)

2. Absolute convergence. The expression (2.7) is a formal power series represen-
tation, which will be valid if we could show that the series converges absolutely. Let
α > 1 and define h(t) as (see Figure 2.2)

h(t) =

e−t−α t > 0,
0 t ≤ 0.

-5 0 5 10 15

0.5

1

t

Figure 2.2: The function h(t) (here with α = 2).

It can be shown that there exists θ = θ(α) > 0 such that for all t > 0

|h( j)(t)| ≤
j!

(θt) j e
−

1
2 t−α
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(see F. John, Partial Differential Equations, Fourth Edition, Chapter 3.3(c) Problem 3).
Hence, the coefficient of x2 j in the power series satisfies

|h( j)|(t)
(2 j)!

≤
j!

(2 j)!(θt) j e
−

1
2 t−α .

As j!
(2 j)! <

1
j! we find that for t > 0 and any x ∈ C,∣∣∣∣∣∣∣∣

∞∑
j=0

h( j)(t)
(2 j)!

x2 j

∣∣∣∣∣∣∣∣ ≤
∞∑
j=0

|x|2 j

j!(θt) j e
−

1
2 t−α = e

1
t

(
|x|2
θ −

1
2 t1−α

)
, (2.8)

since the exponential function has the well-known power series representation ez =∑
∞

j=0
z j

j! for any z ∈ C. We have therefore proved that the power series representation
of u appearing in (2.7) converges pointwise at every x ∈ C and t > 0, implying that it is a
valid power series representation. Clearly, the convergence also holds for t ≤ 0 where
the series is trivial.

3. Uniform convergence. First, we note that from (2.8) it follows that for all x in a
compact subset of C, the limit limt↓0 u(x, t) = 0 holds uniformly. We only know that the
power series representation of u is valid, but we need to show that the heat equation
holds, i.e. we need to prove that we can differentiate the power series term-by-term,
twice in x and once in t. For this we need uniform convergence. From (2.8), it follows
that for x ∈ C, t ∈ R, the function

U(x, t) =

e
1
t

(
x2
θ −

1
2 t1−α

)
t > 0,

0 t ≤ 0,

serves as a uniform bound for the series expansion of u(x, t). Since U(x, t) is bounded
uniformly for bounded complex x and all t ∈ R, the series for u converges uniformly
for bounded x and t ∈ R. The same holds for all x and t derivatives of U and of the
power series for u.

Therefore we can conclude that ut = uxx and that u ∈ C∞(R ×R). �

2.6 The Backward Heat Equation is Ill-Posed

The ‘backward’ heat equation is the heat equation with time reversed, that is, it is the
equation

ut + κuxx = 0 (2.9)

where κ > 0. In Theorem 2.3 we have seen that the heat equation takes initial data
that is merely bounded and continuous and immediately produces a solution that is
infinitely differentiable (in x and in t) for any t > 0. Intuitively, if we reverse time then
we should ‘un-smooth’ our initial data. In physics, this is translated into the notion
of the arrow of time: there are certain phenomena that are not time-reversible; heat
diffusion is the prime example of a process that cannot be reversed.

In this direction, there are various theorems that can be proved. Here we choose
to use our previous results to show that we can take a sequence gn of smooth initial
data for the backward heat equation, which will have a short lifespan of 1/n. That is,
as t→ 1

n , the solution will “blow-up”.
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Remark: There are two ways to think about the backward heat equation. Either
reverse time in the heat equation, leading to the equation (2.9), or consider the forward
heat equation (2.1) but with time starting from some T > 0 and going backwards.
Below we choose the latter.

Theorem 2.6: Let T > 0. The backward heat equation, that is the equation{
ut − κuxx = 0 in (x, t) ∈ R × (0,T),

u = g on (x, t) ∈ R × {t = T},
(2.10)

with data prescribed at t = T, is ill-posed in the sense that there is a sequence {gn}
∞

n=1 ⊂

C∞(R) such that the corresponding unique physical solution un has a lifespan of 1
n .

Proof. From Lemma 2.2 we know that the fundamental solution Φ(x, t) solves the heat
equation ut − κuxx = 0. Furthermore, as we have seen in Section 2.1, Φ(·, t)→ δ as t ↓ 0
(in the sense of distributions). Therefore, Φn(x, t−T + 1

n ) solves the backward equation
with the ‘initial’ condition gn(x) = Φn(x, 1

n ) at time t = T which is C∞, but which as
t ↓ T − 1

n tends to δ (in the sense of distributions). �

Remark: We could have multiplied the gn’s by small positive constants to ensure that
they are arbitrarily small in any reasonable norm, in which case they could be viewed
as a perturbation of zero.
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Chapter 3

Fourier Series: A Brief Review

A Fourier series is a series expansion of a function in terms of sines and/or cosines.

When studying heat flow, Joseph Fourier understood that the key was in
writing a trigonometric series expansion of solutions, and studying them
term by term. His 1807 paper on this subject was rejected as too imprecise,
and was only published in 1822.

Joseph Fourier (1768-1830)

This section will be mostly formal, with some proofs verifying that the various series
indeed converge in an appropriate sense.

3.1 Sine, Cosine and Full Fourier Series

3.1.1 Sine Series

x

Let φ(x) be some function on the interval [0,L]. We define
its sine series to be

φ(x) =

∞∑
n=1

Bn sin
nπx

L
.

Observing the all the sines in this series vanish at x = 0
and x = L, it is obvious that it would be advisable for φ
to also vanish there. Indeed, this expansion is preferable for problems with Dirichlet
boundary conditions where we shall require solutions to vanish on the boundary. Using
the orthogonality of sines∫ L

0
sin

nπx
L

sin
mπx

L
dx =

0 n , m,
L
2 n = m,

Exercise 3.1: Can you prove this?

we find that

Bn =
2
L

∫ L

0
φ(x) sin

nπx
L

dx.
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3.1.2 Cosine Series

x

Similarly, we can define the cosine series of a function
φ(x) as

φ(x) =
1
2

A0 +

∞∑
n=1

An cos
nπx

L
.

Observing the derivatives of all the cosines in this series
vanish at x = 0 and x = L, it is obvious that it would be
advisable for φ to also have a derivative that vanishes there. Indeed, this expansion is
preferable for problems with Neumann boundary conditions where we shall require the
derivative of solutions to vanish on the boundary. Using the orthogonality of cosines∫ L

0
cos

nπx
L

cos
mπx

L
dx =

0 n , m,
L
2 n = m,

we find that

An =
2
L

∫ L

0
φ(x) cos

nπx
L

dx.

3.1.3 Full Fourier Series

We write the full Fourier series on the interval (−L,L), where we have:

φ(x) =
1
2

A0 +

∞∑
n=1

(
An cos

nπx
L

+ Bn sin
nπx

L

)
.

Using ∫ L

−L
cos

nπx
L

cos
mπx

L
dx =

0 n , m,
L n = m,∫ L

−L
sin

nπx
L

sin
mπx

L
dx =

0 n , m,
L n = m,∫ L

−L
sin

nπx
L

cos
mπx

L
dx = 0∫ L

−L
sin

nπx
L

dx =

∫ L

−L
cos

nπx
L

dx = 0

we find that

An =
1
L

∫ L

−L
φ(x) cos

nπx
L

dx, for n = 0, 1, 2, . . .

Bn =
1
L

∫ L

−L
φ(x) sin

nπx
L

dx, for n = 1, 2, 3, . . .

Exercise 3.2: Find the coefficients of the Fourier sine and cosine series on (0,L) and of the full Fourier series on (−L,L) of

• φ(x) = 1,

• φ(x) = x.

3 – 28



3.1.4 Complex Form of the Fourier Series
Using the DeMoivre formulas

sinθ =
eiθ
− e−iθ

2i
and cosθ =

eiθ + e−iθ

2i
we find that we can replace the basis

{1, sin(πx/L), cos(πx/L), sin(2πx/L), cos(2πx/L), . . .}

for functions on (−L,L) with the elegant basis

{e
inπx

L }n∈Z

so that we can write

φ(x) =

∞∑
n=−∞

cne
inπx

L .

Using the fact that ∫ L

−L
e

inπx
L e

−imπx
L dx =

0 n , m,
2L n = m,

we find

cn =
1

2L

∫ L

−L
φ(x)e

−inπx
L dx.

3.2 Orthogonality and General Fourier Series

Consider now a general interval (a, b) and functions f (x), g(x) (possibly complex-
valued) defined on it. Define their inner product as:

( f , g) :=
∫ b

a
f (x)g(x) dx

and we say that f and g are orthogonal if ( f , g) = 0.

Consider the following operators and boundary conditions:

• LD = negative second derivative operator with Dirichlet BCs:

LD f (x) = − f ′′(x), and f (a) = f (b) = 0.

• LN = negative second derivative operator with Neumann BCs:

LN f (x) = − f ′′(x), and f ′(a) = f ′(b) = 0.

• LP = negative second derivative operator with periodic BCs:

LP f (x) = − f ′′(x), and f (a) = f (b), f ′(a) = f ′(b).
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Lemma 3.1 (Green’s Second Identity): Let y1, y2 ∈ C2(a, b), then∫ b

a

(
−y′′1 y2 + y1y2

′′
)

dx =
(
−y′1y2 + y1y2

′
) ∣∣∣∣b

x=a
. (3.1)

Proof. This is an exercise. �

Lemma 3.2: Assume that both y1 and y2 satisfy either Dirichlet, Neumann or periodic
BCs. Then the RHS of (3.1) is 0.

Proof. This is an exercise. �

Observation: LetL ∈ {LD,LN,LP} and let (λ,X) be an eigenvalue-eigenfunction pair
of L:

LX = λX in (a, b). (3.2)

Then (λ∗,X) is also an eigenvalue-eigenfunction pair of L.1

Proof. This is an exercise. �

Theorem 3.3: Let L ∈ {LD,LN,LP}. Then L has no complex eigenvalues, and any
eigenfunction can be taken to be real-valued.

Proof. In Green’s Second Identity (3.1) replace both y1 and y2 with some function X(x)
that is an eigenfunction of L with eigenvalue λ. From Lemma 3.2 we know that the
RHS of (3.1) is 0. Hence we have

0 =

∫ b

a

(
−X′′(x)X(x) + X(x)X

′′

(x)
)

dx

=

∫ b

a

(
λX(x)X(x) − λ∗X(x)X(x)

)
dx

= (λ − λ∗)
∫ b

a
X(x)X(x) dx

= (λ − λ∗)
∫ b

a
|X(x)|2 dx.

Since |X(x)|2 ≥ 0 and since X(x) is not trivial, the integral
∫ b

a |X(x)|2 dx must be strictly
positive. Then necessarily λ − λ∗ = 0 which can only be true if λ ∈ R.

It remains to be shown that the eigenfunction can be taken to be real-valued.
Suppose that it is complex-valued and write it as

X(x) = Y(x) + iZ(x)

where Y and Z are real-valued. Then

−Y′′(x) − iZ′′(x) = −X′′(x) = λX(x) = λY(x) + iλZ(x).

Taking real and imaginary parts, we have

−Y′′(x) = λY(x) and − Z′′(x) = λZ(x).

Furthermore, whichever boundary conditions are satisfied by X will also be satisfied
by Y and by Z.

1We denote �∗ the complex conjugate of a number, and by � the complex conjugate of a function.
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Exercise 3.3: Can you prove this?

Hence Y and Z are real-valued eigenfunctions with eigenvalue λ, satisfying the
same boundary conditions. Observe that X has eigenvalue λ∗ = λ (all eigenvalues
are real!). We conclude that we can replace X and X by Y and Z, observing that
span(X,X) = span(Y,Z).

�

Theorem 3.4: Let L ∈ {LD,LN,LP}. Then any two eigenfunctions corresponding to
different eigenvalues of L are orthogonal. Consequently, if any function is expressed
in a series of these eigenfunctions, the coefficients are determined.

Proof. We already know that all eigenvalues are real and the all eigenfunctions can be
taken to be real-valued. Take two eigenvalue-eigenfunction pairs (λ1,X1) and (λ2,X2)
with λ1 , λ2. In (3.1) replace y1 and y2 by X1 and X2: the RHS is 0 by Lemma 3.2. So
we have

0 =

∫ b

a

(
−X′′1 (x)X2(x) + X1(x)X′′2 (x)

)
dx

=

∫ b

a
(λ1X1(x)X2(x) − λ2X1(x)X2(x)) dx

= (λ1 − λ2)
∫ b

a
X1(x)X2(x) dx.

Since λ1 , λ2 it follows that
∫ b

a X1(x)X2(x) dx = 0, that is X1 and X2 are orthogonal:
(X1,X2) = 0.

Now, denote by Xn an eigenfunction corresponding to the eigenvalue λn and sup-
pose that

φ(x) =
∑

n
AnXn(x) (3.3)

is a convergent series2. Then

(φ,Xm) =

∑
n

AnXn,Xm

 =
∑

n
An (Xn,Xm) = Am(Xm,Xm)

because of the orthogonality, and therefore

Am =
(φ,Xm)

(Xm,Xm)

is the formula for the coefficients. �

Remark: Note that a given eigenvalue might have two (or more) eigenfunctions cor-
responding to it that are not multiples of each other. These do not have to be orthogonal,
but can be made to be orthogonal by the Gram-Schmidt procedure.

Theorem 3.5: Let L ∈ {LD,LN,LP}. Then L has no negative eigenvalues.
2We still need to discuss what ‘convergence’ precisely means.
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Proof. We start with Green’s First Identity:∫ b

a
f ′′(x)g(x) dx = −

∫ b

a
f ′(x)g′(x) dx + f ′(x)g(x)

∣∣∣∣b
x=a

(3.4)

(this is just integration by parts). Choose both f and g to be the same real eigenfunction
X with real eigenvalue λ. Then:

LHS of (3.4) =

∫ b

a
X′′(x)X(x) dx = −λ

∫ b

a
X2(x) dx

RHS of (3.4) = −

∫ b

a
X′(x)X′(x) dx + X′(x)X(x)

∣∣∣∣b
x=a

= −

∫ b

a
(X′(x))2 dx + X′(b)X(b) − X′(a)X(a)︸                     ︷︷                     ︸

=0 because of BCs

It follows that

λ =

∫ b
a (X′(x))2 dx∫ b

a X2(x) dx
≥ 0.

Moreover, λ = 0 if and only if X(x) ≡ const , 0. Note that a nonzero constant can be
an eigenfunction only for LN and LP but not LD.

�

Theorem 3.6: LetL ∈ {LD,LN,LP}. ThenL has infinitely many eigenvalues tending
to +∞.

Proof. Strictly speaking, this theorem is trivial, since it is easy to check that the eigen-
values in these cases are (up to a constant) λn ∼ n2 (see Chapter 4). However, this
theorem holds for more general operators, and is therefore nontrivial. We do not in-
clude the proof here. A detailed proof can be found in W. A. Strauss, Partial Differential
Equations: An Introduction, Second Edition, Chapter 11. �

3.3 Convergence of General Fourier Series

Our goal in this section is to understand, for an expression such as (3.3), in what sense
the Fourier series converges. More generally, let f and { fn}∞n=1 be functions defined on
[a, b], and we want to consider whether the partial sum SN(x) :=

∑N
n=1 fn(x) converges

to f (x) as N → +∞. Let us recall three important notions of convergence in this case
(we have already seen this in Section 2.5):
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We say that the series
∑
∞

n=1 fn(x) ...

converges pointwise to f (x) in (a, b) if it converges for each x ∈ (a, b). That
is, for each x ∈ (a, b) we have∣∣∣ f (x) − SN(x)

∣∣∣→ 0 as N→ +∞;

converges uniformly to f (x) in [a, b] if

max
x∈[a,b]

∣∣∣ f (x) − SN(x)
∣∣∣→ 0 as N→ +∞;

converges in L2 (or mean square) to f (x) in (a, b) if∫ b

a

∣∣∣ f (x) − SN(x)
∣∣∣2 dx→ 0 as N→ +∞.

Three Notions of Convergence

Let L ∈ {LD,LN,LP} and consider the eigenvalue problem (3.2). We know that L has
infinitely many real and nonnegative eigenvalues

0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · ·

and corresponding to them infinitely many eigenfunctions

X1,X2,X3, . . .

which can be taken to be real-valued and mutually orthogonal. The Fourier coefficients
of the function f are defined as

An =
( f ,Xn)

(Xn,Xn)
=

∫ b
a f (x)Xn(x) dx∫ b

a |Xn(x)|2 dx
.

We can now state three theorems regarding the three notions of convergence:

Theorem 3.7 (Uniform Convergence): The Fourier series
∑

n AnXn(x) converges to
f (x) uniformly on [a, b] provided that

1. f (x), f ′(x) exist and are continuous on [a, b], and

2. f (x) satisfies that same boundary condition as L.

Theorem 3.8 (L2 Convergence): The Fourier series
∑

n AnXn(x) converges to f (x) in L2

on (a, b) provided that f (x) has finite L2-norm, i.e.:∫ b

a
| f (x)|2 dx < +∞.
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Theorem 3.9 (Pointwise Convergence): 1. The classical Fourier series (sine, cosine
or full) converges to f (x) pointwise on (a, b) provided that f (x) is a continuous
function on [a, b] and f ′(x) is piecewise continuous on [a, b].

2. If f (x) itself is only piecewise continuous on [a, b] and f ′(x) is also piecewise
continuous on [a, b], then the Fourier series converges for all x ∈ R with

∞∑
n=1

AnXn(x) =
f (x+) + f (x−)

2
for all x ∈ (a, b).

The sum is 1
2 [ fext(x+) + fext(x−)] for all x ∈ R, where fext(x) is the extension of f (x)

(odd periodic, even periodic or periodic).

Remark: Theorem 3.9 has several definitions which we have not encountered before.
Let us clarify them:

1. For any function f (x) we define

f (x+) := lim
ε↓0

f (x + ε) and f (x−) := lim
ε↓0

f (x − ε)

whenever these limits exist. These limits are the same at points of continuity of
f .

2. Somewhat informally, the various extensions of a function f (x) defined on (a, b)
are as follows:

• A periodic extension is a function fext(x) defined on R that is obtained by
copying and pasting f onto the intervals (b, 2b− a), (2b− a, 3b− 2a), . . . to the
right, and similarly to the left.

• An odd extension is a function fext(x) obtained by first extending f to
(2a− b, a) oddly (around a), and then extending the resulting functions peri-
odically.

• An even extension is a function fext(x) obtained by first extending f to
(2a − b, a) evenly (around a), and then extending the resulting functions
periodically.

Since Theorem 3.9 is quite lengthy to state, it is easier to state it already for a
function with period 2L defined on the whole real line. The following is an equivalent
formulation of Theorem 3.9:

Theorem 3.9′ (Pointwise Convergence, equivalent form): Let f (x) be a 2L-periodic
function on R. Assume that f (x) and f ′(x) are both piecewise continuous. Then the
classical full Fourier series converges to 1

2 [ f (x+) + f (x−)] for all x ∈ R.

3.3.1 L2 Theory: Bessel’s Inequality and Parseval’s Equality

The goal of this section is to prove Theorem 3.8 on the L2 convergence of the Fourier
series and provide the functional background required. The proof won’t be complete
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(Theorem 3.12 is given without proof). As we have seen, the inner product is defined
as:

( f , g) :=
∫ b

a
f (x)g(x) dx.

This allows us to define a norm:

‖ f ‖ =
√

( f , f ) =

√∫ b

a
| f (x)|2 dx

which leads to the notion of a distance (metric):

‖ f − g‖ =

√∫ b

a
| f (x) − g(x)|2 dx.

Theorem 3.10 (Bessel’s inequality): Let f (x) be a function defined on (a, b) with Fourier
series

∑
∞

n=1 AnXn(x). Then
∞∑

n=1

A2
n‖Xn‖

2
≤ ‖ f ‖2.

Proof. Since f (x) is given as f (x) =
∑
∞

n=1 AnXn(x), it would be sensible to split this
expression into a partial sum and a tail:

f (x) =

∞∑
n=1

AnXn(x) =

N∑
n=1

AnXn(x)︸        ︷︷        ︸
SN(x)

+

∞∑
n=N+1

AnXn(x)

so that the tail satisfies
∞∑

n=N+1

AnXn(x) = f (x) − SN(x).

Define the error as

EN :=
∥∥∥∥ ∞∑

n=N+1

AnXn

∥∥∥∥2
= ‖ f − SN‖

2.
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Then we have

EN = ‖ f − SN‖
2

=

∫ b

a

∣∣∣∣ f (x) −
N∑

n=1

AnXn(x)
∣∣∣∣2 dx

=

∫ b

a
| f (x)|2 dx − 2

N∑
n=1

∫ b

a
f (x)AnXn(x) dx +

N∑
n=1

N∑
m=1

∫ b

a
AnAmXn(x)Xm(x) dx

= ‖ f ‖2 − 2
N∑

n=1

An( f ,Xn) +

N∑
n=1

N∑
m=1

AnAm(Xn,Xm)

= ‖ f ‖2 − 2
N∑

n=1

A2
n‖Xn‖

2 +

N∑
n=1

A2
n‖Xn‖

2

= ‖ f ‖2 −
N∑

n=1

A2
n‖Xn‖

2.

Recall that EN is, by definition, a square of a norm of some function, and therefore
nonnegative. It follows that

N∑
n=1

A2
n‖Xn‖

2
≤ ‖ f ‖2.

But this is true for every N ∈ N. Hence all partial sums
∑N

n=1 A2
n‖Xn‖

2 are uniformly
bounded, which implies that we may take the limit N→ +∞ to get

∞∑
n=1

A2
n‖Xn‖

2
≤ ‖ f ‖2.

This is known as Bessel’s inequality. �

Theorem 3.11: The Fourier series of f converges to f in L2 if and only if there is an
equality in Bessel’s inequality.

Proof. By definition, SN converges to f in the L2 sense if and only if EN =
∫ b

a | f (x) −
SN(x)|2 dx → 0 as N → +∞. However, the previous proof shows that EN → 0 as
N → +∞ if and only if ‖ f ‖2 −

∑N
n=1 A2

n‖Xn‖
2
→ 0 as N → +∞. This last limit holds if

and only if
∞∑

n=1

A2
n‖Xn‖

2 = ‖ f ‖2.

This is known as Parseval’s equality. �

The set of mutually orthogonal functions {Xi(x)}∞i=1 is called complete if Parse-

val’s equality is true for every f with finite L2-norm: ‖ f ‖2 =
∫ b

a | f (x)|2 dx < +∞.

Complete set
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Theorem 3.8 states that the Fourier series converges in L2 if f has finite L2-norm.
This can now equivalently be stated as follows:

Theorem 3.12 (L2 Convergence, new version): The eigenfunctions {Xi(x)}∞i=1 coming
from LD,LN and LP form a complete set.

We do not prove this theorem here.

3.3.2 Uniform Convergence
Proof of Theorem 3.7. Here we prove Theorem 3.7 on the uniform convergence of the
Fourier series whenever

1. f (x), f ′(x) exist and are continuous on [a, b], and

2. f (x) satisfies that same boundary condition as L.

We prove for the case of the full Fourier series on (−L,L) with periodic BCs. To simplify
further, we take L = π. We write the series for f

f (x) =
1
2

A0 +

∞∑
n=1

(
An cos(nx) + Bn sin(nx)

)
.

and the series for f ′ (we cannot assume that it is simply given by the term-by-term
differentiation of the series for f )

f ′(x) =
1
2

Ã0 +

∞∑
n=1

(
Ãn cos(nx) + B̃n sin(nx)

)
.

Then for every n = 0, 1, . . .

An =
1
π

∫ π

−π
f (x) cos(nx) dx

(int. by parts) =
1

nπ
f (x) sin(nx)

∣∣∣π
x=−π︸                   ︷︷                   ︸

=0

−
1

nπ

∫ π

−π
f ′(x) sin(nx) dx︸                        ︷︷                        ︸
=− 1

n B̃n

= −
1
n

B̃n

Similarly we find that

Bn =
1
n

Ãn.

Note that this step used the periodicity and continuity of f and f ′. We therefore have:
∞∑

n=1

(
|An cos(nx)| + |Bn sin(nx)|

)
≤

∞∑
n=1

(
|An| + |Bn|

)
=

∞∑
n=1

1
n

(
|Ãn| + |B̃n|

)
Cauchy-Schwarz ≤

 ∞∑
n=1

1
n2


1
2
 ∞∑

n=1

(
|Ãn| + |B̃n|

)2


1
2

≤ C

 ∞∑
n=1

2
(
|Ãn|

2 + |B̃n|
2
)

1
2
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which is finite by Bessel’s inequality. Hence

∞∑
n=1

(
|An cos(nx)| + |Bn sin(nx)|

)
< +∞,

that is, the Fourier series of f converges absolutely. Therefore, computing the difference
between f and the partial Fourier sums, we find

max
x∈[−π,π]

∣∣∣∣∣∣∣ f (x) −
1
2

A0 −

N∑
n=1

(
An cos(nx) + Bn sin(nx)

)∣∣∣∣∣∣∣
= max

x∈[−π,π]

∣∣∣∣∣∣∣
∞∑

n=N+1

(
An cos(nx) + Bn sin(nx)

)∣∣∣∣∣∣∣
≤ max

x∈[−π,π]

∞∑
n=N+1

∣∣∣∣An cos(nx) + Bn sin(nx)
∣∣∣∣

≤

∞∑
n=N+1

(|An| + |Bn|)

which is the tail of a convergent series, i.e. it tends to 0 as N→ +∞. By definition, this
means that the Fourier series of f converges to f uniformly. �
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Chapter 4

Separation of Variables: The Wave and
Heat Equations on an Interval

In this section we solve the initial boundary value problem (IBVP) for the wave and
heat equations on an interval. We shall see that because of the simple geometry (an
interval (0,L) in the spatial variable) we can separate the two variable (spatial and
temporal) and solve for each separately. It’s important to note that this strategy won’t
work in more complex geometries, and it is therefore wrong to assume that this is a
general strategy for solving PDEs!

Make the ansatz that the solution u(x, t) is the product of a function of x and a
function of t:

u(x, t) = X(x)T(t). (4.1)

Strategy

4.1 Dirichlet Boundary Conditions

We start with homogeneous Dirichlet problems, where the values at the boundary of
the various problems are fixed and equal to 0.

4.1.1 The Wave Equation

We start by considering the Dirichlet IBVP for the homogeneous wave equation:
utt(x, t) − c2uxx(x, t) = 0 in (x, t) ∈ (0,L) × (0,+∞),

u(0, t) = u(L, t) = 0 for t > 0,
u(x, 0) = φ(x) in x ∈ (0,L),

ut(x, 0) = ψ(x) in x ∈ (0,L).

(4.2)

This models a vibrating string of length L, fixed (at the same height) at the end-points,
with initial position given by the function φ and the initial vertical speed given by ψ.
Plugging in the ansatz (4.1) into the wave equation we have:

X(x)T′′(t) − c2X′′(x)T(t) = 0.
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Dividing by c2XT, and rearranging the equality, this becomes

−
1
c2

T′′

T
= −

X′′

X
. (4.3)

Remark: Note the negative sign: considering the results of Section 3.2, and in par-
ticular Theorem 3.5, we anticipate that the operator L f = − f ′′ is the natural one to
consider.

In (4.3), the LHS is a function solely of t, while the RHS is a function solely of x.
The only way for functions of two different independent variables to equal one another,
is if they are both constant. We call this constant λ (again in anticipation of using the
eigenvalue results of Section 3.2):

−
1
c2

T′′

T︸  ︷︷  ︸
function of t

= λ = −
X′′

X︸︷︷︸
function of x

.

This leads to the two ordinary differential equations (ODEs) in x and in t:

−T′′(t) = λc2T(t) and − X′′(x) = λX(x).

From Theorem 3.5 we know that λ ≥ 0, so that there exists β ∈ R such that β2 = λ. We
therefore replace λ by β2.

Spatial part

In the spatial variable we have a Dirichlet problem on the interval (0,L), which is exactly
the operatorLD from Section 3.2. Our goal now is to find eigenvalue-eigenfunction pairs
of this problem. The equation for the spatial part is{

−X′′(x) = β2X(x) in 0 < x < L,
X(0) = X(L) = 0.

(4.4)

The equation is solved by sines and cosines, with the general solution having the form:

X(x) = C cos βx + D sin βx

where C and D are constants. We now impose the boundary conditions which will
restrict that range of possible values of these constants. First, imposing X(0) = 0 we
find

X(0) = 0 ⇒ C cos 0︸︷︷︸
=1

+D sin 0︸︷︷︸
=0

= 0 ⇒ C = 0.

Now we impose X(L) = 0:

X(L) = 0 ⇒ D sin βL = 0 ⇒ βL = nπ (n = 1, 2, . . .).

Hence the range of possible values of β is discretized (sometimes also called quantized):
βn = nπ

L , n = 1, 2, . . . We therefore conclude that the eigenvalue-eigenfunction pair of
the problem (4.4) is

λn = β2
n =

(nπ
L

)2
and sin

nπx
L
, n = 1, 2, . . .
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Temporal part

In the temporal variable we have the problem

−T′′(t) = β2c2T(t), t > 0.

The general solution is
T(t) = A cos βct + B sin βct

where A and B are constants.

Back to the problem (4.2)

Plugging into the ansatz (4.1) the expressions we’ve obtained for X(x) and for T(t), we
have

un(x, t) =
(
An cos

(nπ
L

ct
)

+ Bn sin
(nπ

L
ct
))

sin
(nπx

L

)
By linearity, any finite sum of such solutions will still be a solution. That is,

u(x, t) =
∑

n

(
An cos

(nπ
L

ct
)

+ Bn sin
(nπ

L
ct
))

sin
(nπx

L

)
(4.5)

is also a solution of the problem (4.2), where we have thus far only imposed the
boundary conditions, i.e. u as defined in (4.5) satisfies u(0, t) = u(L, t) = 0. We are now
ready to impose the initial conditions:

First we have

φ(x) = u(x, 0) =
∑

n

(
An cos

(nπ
L

c · 0
)

︸         ︷︷         ︸
=1

+Bn sin
(nπ

L
c · 0

)
︸         ︷︷         ︸

=0

)
sin

(nπx
L

)

=
∑

n
An sin

(nπx
L

)
.

Since the sum appearing in (4.5) is finite, we can take a time derivative, to get

ut(x, t) =
∑

n

(
−An

nπ
L

c sin
(nπ

L
ct
)

+ Bn
nπ
L

c cos
(nπ

L
ct
))

sin
(nπx

L

)
.

Then we obtain

ψ(x) = ut(x, 0) =
∑

n

(
− An

nπ
L

c sin
(nπ

L
c · 0

)
︸         ︷︷         ︸

=0

+Bn
nπ
L

c cos
(nπ

L
c · 0

)
︸         ︷︷         ︸

=1

)
sin

(nπx
L

)

=
∑

n
Bn

nπ
L

c sin
(nπx

L

)
.

We therefore have Fourier sine series expansions for both φ and ψ, for which we
know the formula for the coefficients (see Section 3.1.1): from the series for φwe have

An =
2
L

∫ L

0
φ(x) sin

(nπx
L

)
dx (4.6)
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and from the series for ψ we have

Bn =
2

nπc

∫ L

0
ψ(x) sin

(nπx
L

)
dx. (4.7)

Thus, (4.5), (4.6) and (4.7) together provide us with the general form of the solution of
(4.2) (under the various assumptions we’ve made along the way, of course). Moreover,
there’s no claim about this being the solution. We’ve merely shown that this is a
solution.

4.1.2 The Heat (Diffusion) Equation
Here we consider the Dirichlet IBVP for the homogeneous heat equation:

ut(x, t) − κuxx(x, t) = 0 in (x, t) ∈ (0,L) × (0,+∞),
u(0, t) = u(L, t) = 0 for t > 0,

u(x, 0) = φ(x) in x ∈ (0,L).
(4.8)

This models a conductive rod of length L, with an initial temperature φ(x) at the point
x, with the ends always held at 0 degrees. Plugging in the ansatz (4.1) into the heat
equation we have:

X(x)T′(t) − κX′′(x)T(t) = 0.

Dividing by κXT, and rearranging the equality, this becomes

−
1
κ

T′

T
= −

X′′

X
.

As before, we find that a function of x is identically equal to a function of t; this can
only be possible if these two functions are constant. We call this constant λ. This leads
to the two ordinary differential equations (ODEs) in x and in t:

−T′(t) = λκT(t) and − X′′(x) = λX(x).

Considering the equation for X, Theorem 3.5 implies that λ ≥ 0, and we let β2 = λ.

Spatial part

The spatial part is identical to the spatial part in Section 4.1.1 and we again find the
eigenvalue-eigenfunction pairs:

λn = β2
n =

(nπ
L

)2
and sin

nπx
L
, n = 1, 2, . . .

Temporal part

The temporal part differs from the temporal part in the wave equation. Here we find
the first order ODE

−T′(t) = λκT(t), t > 0,

where the general solution is
T(t) = Ae−λκt

where A is a constant.
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Back to the problem (4.8)

As before, we plug these results into the ansatz (4.1) to obtain

un(x, t) = Ane−(
nπ
L )2

κt sin
(nπx

L

)
,

and by linearity, any sum of such solutions will still be a solution, so

u(x, t) =
∑

n
Ane−(

nπ
L )2

κt sin
(nπx

L

)
(4.9)

is also a solution. As before, we impose the initial condition:

φ(x) = u(x, 0) =
∑

n
An e−(

nπ
L )2

κ·0︸    ︷︷    ︸
=1

sin
(nπx

L

)
=

∑
n

An sin
(nπx

L

)
.

We again have a Fourier sine series expansion for φ and, for which the coefficients are
given by the formula (see Section 3.1.1):

An =
2
L

∫ L

0
φ(x) sin

(nπx
L

)
dx. (4.10)

The equations (4.9) and (4.10) together provide us with the general form of the solution
of (4.8).

4.2 Neumann Boundary Conditions

After considering the Dirichlet problems, we can also consider the equivalent homo-
geneous Neumann problems, where the derivatives at the boundary is fixed and equal
to 0. The majority of the analysis is the same as in the Dirichlet case, except for the
imposition of the boundary conditions for the spatial variable. This will lead to Fourier
cosine series.

4.2.1 The Wave Equation

The Nueumann IBVP for the wave equation models a vibrating string (lying horizon-
tally) of length L which at both ends is free to move transversally along a track with
no resistance (so that the angle of the string at the track has no vertical component):

utt(x, t) − c2uxx(x, t) = 0 in (x, t) ∈ (0,L) × (0,+∞),
ux(0, t) = ux(L, t) = 0 for t > 0,

u(x, 0) = φ(x) in x ∈ (0,L),
ut(x, 0) = ψ(x) in x ∈ (0,L).

(4.11)

As before, plugging in the ansatz (4.1) into the wave equation we have:

X(x)T′′(t) − c2X′′(x)T(t) = 0.
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Dividing by c2XT, and rearranging, we have, as before

−
1
c2

T′′

T︸  ︷︷  ︸
function of t

= λ = −
X′′

X︸︷︷︸
function of x

.

This leads to the two ordinary differential equations (ODEs) in x and in t:

−T′′(t) = λc2T(t) and − X′′(x) = λX(x).

From Theorem 3.5 we know that λ ≥ 0, so that there exists β ∈ R such that β2 = λ. We
therefore replace λ by β2.

Spatial part

Now we consider the Neumann problem on the interval (0,L), which is the operatorLN
from Section 3.2. Our goal now is to find eigenvalue-eigenfunction pairs of this problem.
The equation for the spatial part is{

−X′′(x) = β2X(x) in 0 < x < L,
X′(0) = X′(L) = 0.

(4.12)

The equation is solved by sines and cosines, with the general solution having the form:

X(x) = C cos βx + D sin βx so that X′(x) = −Cβ sin βx + Dβ cos βx

where C and D are constants. We now impose the boundary conditions which will
restrict that range of possible values of these constants. First, imposing X′(0) = 0 we
find

X′(0) = 0 ⇒ −Cβ sin 0︸︷︷︸
=0

+Dβ cos 0︸︷︷︸
=1

= 0 ⇒ D = 0.

Now we impose X′(L) = 0:

X′(L) = 0 ⇒ Cβ sin βL = 0 ⇒ βL = nπ (n = 1, 2, . . .).

Hence the range of possible values of β is: βn = nπ
L , n = 1, 2, . . . We therefore conclude

that the eigenvalue-eigenfunction pair of the problem (4.12) is

λn = β2
n =

(nπ
L

)2
and cos

nπx
L
, n = 0, 1, 2, . . .

where we note that 0 is also an eigenvalue, as opposed to the Dirichlet case!

Temporal part

In the temporal variable we have the problem

−T′′(t) = β2c2T(t), t > 0.

For β > 0 the general solution is

T(t) = A cos βct + B sin βct

where A and B are constants, and for β = 0 we get

T(t) = A + Bt.
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Back to the problem (4.11)

Plugging into the ansatz (4.1) the expressions we’ve obtained for X(x) and for T(t), we
have

un(x, t) =
(
An cos

(nπ
L

ct
)

+ Bn sin
(nπ

L
ct
))

cos
(nπx

L

)
By linearity, any sum of such solutions will still be a solution. We must now also
include the solution corresponding to the 0 eigenvalue, which is just 1

2A0 + 1
2B0t (the 1

2
factor is a choice we make for normalisation). That is,

u(x, t) =
1
2

A0 +
1
2

B0t +
∑

n

(
An cos

(nπ
L

ct
)

+ Bn sin
(nπ

L
ct
))

cos
(nπx

L

)
(4.13)

is also a solution of the problem (4.11), where we have thus far only imposed the
boundary conditions, i.e. u as defined in (4.13) satisfies ux(0, t) = ux(L, t) = 0. We are
now ready to impose the initial conditions:

First we have

φ(x) = u(x, 0) =
1
2

A0 +
1
2

B0 · 0 +
∑

n

(
An cos

(nπ
L

c · 0
)

︸         ︷︷         ︸
=1

+Bn sin
(nπ

L
c · 0

)
︸         ︷︷         ︸

=0

)
cos

(nπx
L

)

=
1
2

A0 +
∑

n
An cos

(nπx
L

)
.

Since the sum appearing in (4.13) is finite, we can take a time derivative, to get

ut(x, t) =
1
2

B0 +
∑

n

(
−An

nπ
L

c sin
(nπ

L
ct
)

+ Bn
nπ
L

c cos
(nπ

L
ct
))

cos
(nπx

L

)
.

Then we obtain

ψ(x) = ut(x, 0) =
1
2

B0 +
∑

n

(
− An

nπ
L

c sin
(nπ

L
c · 0

)
︸         ︷︷         ︸

=0

+Bn
nπ
L

c cos
(nπ

L
c · 0

)
︸         ︷︷         ︸

=1

)
cos

(nπx
L

)

=
1
2

B0 +
∑

n
Bn

nπ
L

c cos
(nπx

L

)
.

We therefore have Fourier cosine series expansions for both φ and ψ, for which we
know the formula for the coefficients (see Section 3.1.2): from the series for φwe have

An =
2
L

∫ L

0
φ(x) cos

(nπx
L

)
dx, n = 0, 1, 2, . . . (4.14)

and from the series for ψ we have

B0 =
2
L

∫ L

0
ψ(x) dx,

and

Bn =
2

nπc

∫ L

0
ψ(x) cos

(nπx
L

)
dx, n = 1, 2, . . . (4.15)

Thus, (4.13), (4.14) and (4.15) together provide us with the general form of the solution
of (4.11) (under the various assumptions we’ve made along the way, of course).
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4.2.2 The Heat (Diffusion) Equation
The Neumann IBVP for the heat equation is

ut(x, t) − κuxx(x, t) = 0 in (x, t) ∈ (0,L) × (0,+∞),
ux(0, t) = ux(L, t) = 0 for t > 0,

u(x, 0) = φ(x) in x ∈ (0,L).
(4.16)

This models a conductive rod of length L, with an initial temperature φ(x) at the point
x, with the insulated ends. Plugging in the ansatz (4.1) into the heat equation we have:

X(x)T′(t) − κX′′(x)T(t) = 0.

Dividing by κXT, and rearranging the equality, this becomes

−
1
κ

T′

T
= −

X′′

X
.

As before, we find that a function of x is identically equal to a function of t; this can
only be possible if these two functions are constant. We call this constant λ. This leads
to the two ordinary differential equations (ODEs) in x and in t:

−T′(t) = λκT(t) and − X′′(x) = λX(x).

Considering the equation for X, Theorem 3.5 implies that λ ≥ 0, and we let β2 = λ.

Spatial part

The spatial part is identical to the spatial part in Section 4.2.1 and we again find the
eigenvalue-eigenfunction pairs:

λn = β2
n =

(nπ
L

)2
and cos

nπx
L
, n = 0, 1, 2, . . .

where we note that 0 is also an eigenvalue, as opposed to the Dirichlet case!

Temporal part

As in Section 4.1.2 we find the first order ODE

−T′(t) = λκT(t), t > 0,

where the general solution for λ > 0 is

T(t) = Ae−λκt

and for λ = 0 it is
T(t) = A

where A is a constant.
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Back to the problem (4.16)

As before, we plug these results into the ansatz (4.1) to obtain

un(x, t) = Ane−(
nπ
L )2

κt cos
(nπx

L

)
,

and by linearity, any sum of such solutions will still be a solution (including the solution
corresponding to the 0 eigenvalue), so

u(x, t) =
1
2

A0 +
∑

n
Ane−(

nπ
L )2

κt cos
(nπx

L

)
(4.17)

is also a solution. As before, we impose the initial condition:

φ(x) = u(x, 0) =
1
2

A0 +
∑

n
An e−(

nπ
L )2

κ·0︸    ︷︷    ︸
=1

cos
(nπx

L

)
=

1
2

A0 +
∑

n
An cos

(nπx
L

)
.

We again have a Fourier cosine series expansion for φ and, for which the coefficients
are given by the formula (see Section 3.1.1):

An =
2
L

∫ L

0
φ(x) cos

(nπx
L

)
dx, n = 0, 1, 2, . . . (4.18)

The equations (4.17) and (4.18) together provide us with the general form of the solution
of (4.16).

Exercise 4.1: 1. A quantum mechanical particle on the line with an infinite potential outside the interval (0,L) is given by
Schrödinger’s equation ut = iuxx in (0,L) with homogeneous Dirichlet conditions at the ends. Separate the variable and
write the solution in series form.

2. Consider a metal rod with ends at x = 0,L which is insulated along its length but not at its two ends. Initially, its
temperature is identically 1, but then it is immediately plunged into an ice bath at both its ends, where the temperature
is fixed at 0 for all t > 0. Write the PDE, initial and boundary conditions, and write a formula for the temperature u(x, t)
at later times. You may use the following infinite series expansion:

1 =
4
π

(
sin

πx
L

+
1
3

sin
3πx

L
+

1
5

sin
5πx

L
+ · · ·

)
.

3. Solve the diffusion problem ut = κuxx in 0 < x < L with the mixed boundary conditions u(0, t) = ux(L, t) = 0.

4. Solve the wave equation utt = c2uxx in 0 < x < L with the mixed boundary conditions ux(0, t) = u(L, t) = 0.
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Chapter 5

The Laplace Equation in a Bounded Do-
main

The goal of this chapter is to study the Dirichlet problem for the Laplace equation in a
bounded domain Ω ⊂ Rd, d ≥ 2:{

∆ u = 0 in Ω,

u = f on ∂Ω.
(5.1)

The precise regularity required of both ∂Ω and f will be specified later. This boundary
value problem (BVP) is one of the most fundamental in all the natural sciences, and a
brief discussion was presented in Section 1.7.2. We will prove that solutions exist (via
the so-called Perron’s method) and are unique. As part of the proof, we will encounter
many important aspects of this problem, such as the maximum principle, Gauss’ law of
arithmetic mean, Poisson’s formula and the notion of subharmonic functions.

5.1 Basic Properties

We start with some basic properties of the Laplacian and of the equation (5.1) which
shall be useful in the sequel.

5.1.1 Uniqueness of Solutions
Establishing that solutions to (5.1) (if they exist) are unique is actually quite straight-
forward.

Proposition 5.1 (Uniqueness of Solutions): The boundary value problem (5.1) has at
most one solution in C2(Ω).

Proof. The starting point is Green’s identities in dimension d. The general form of these
identities (which we saw in 1D in (3.4) and (3.1)) is:
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Assume that Ω ⊂ Rd, d ∈ N, is an open and bounded set for which the
divergence theorem holds (for instance, ∂Ω ∈ C1 suffices). Let n be the unit
normal vector on ∂Ω oriented to the exterior of Ω. Let u, v ∈ C2(Ω). Then∫

Ω
v ∆ u dx = −

∫
Ω

d∑
i=1

vxiuxi dx +

∫
∂Ω

v
∂u
∂n

dS, (5.2)∫
Ω

v ∆ u dx =

∫
Ω

u ∆ v dx +

∫
∂Ω

(
v
∂u
∂n
− u

∂v
∂n

)
dS. (5.3)

Green’s Identities

By choosing particular u and v we can get additional useful identities. Choosing
u = v in (5.2) leads to an energy identity:∫

Ω

d∑
i=1

u2
xi

dx +

∫
Ω

u ∆ u dx =

∫
∂Ω

u
∂u
∂n

dS.

It follows that if ∆ u = 0 in Ω and either u = 0 on ∂Ω or ∂u
∂n = 0 on ∂Ω, then

∫
Ω

d∑
i=1

u2
xi

dx = 0.

Since the integrand is nonnegative, it follows that uxi = 0 in Ω for all i = 1, . . . , d, so that
u must be constant in Ω. Now, suppose that (5.1) has two solutions u1 and u2. Define
u = u1 − u2. Then u solves {

∆ u = 0 in Ω,

u = 0 on ∂Ω,

so that u must be constant in Ω. Since u = 0 on ∂Ω, that constant must be 0. So
0 ≡ u = u1 − u2, hence u1 ≡ u2. �

Exercise 5.1: Can you show that solutions to the Neumann problem are unique only up to a constant?

5.1.2 Fundamental Solution and Radial Symmetry
In Section 2.1 we saw the fundamental solution for the heat equation in (x, t) ∈ R ×
(0,+∞). There is a similar notion for the Laplace equation

∆ u = 0 in Rd.

In spherical coordinates, let r =
√

x2
1 + · · · x2

d be the radial variable in Rd, then we
define:
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The function

Ψ(r) =

 log r
2π d = 2,
r2−d

(2−d)ωd
d ≥ 3,

is called the fundamental solution of Laplace’s equation in Rd, where r > 0
and where ωd = 2πd/2

Γ( 1
2 d)

is the surface area of the unit sphere in Rd.

The Fundamental Solution

1 We immediately see that Ψ′(r) = ω−1
d r−(d−1) and that

∆x Ψ = Ψ′′(r) +
d − 1

r
Ψ′(r) = 0 for r > 0,

that is Ψ solves the Laplace equation inRd
\{0}. In the case of the fundamental solution

of the heat equation we have seen that there’s an intimate relationship with the Dirac
δ distribution. This is the case here too, where Ψ satisfies

∆x Ψ = δ

in the sense of distributions. As before, we do not elaborate on this, as the theory of
distributions is beyond the scope of this course.

Observe that our radial coordinate r can be generalized: instead of being the dis-
tance from the origin, we could have taken it to be the distance from some arbitrary
fixed point ξ ∈ Rd, that is

r =

√
(x1 − ξ1)2 + · · · (xd − ξd)2. (5.4)

Then the discussion from above still holds: we can still define the fundamental solution
Ψ(r) and the formal equation

∆x Ψ = δξ

still holds, where now the δ distribution is centered around ξ, that is δξ(x) = δ(x − ξ).

The fundamental solution is therefore a kernel depending on x and ξ, which
we write as:

K(x, ξ) = Ψ(|x − ξ|).

The Kernel

1The gamma function evaluated at half-integers is given by Γ( 1
2 ) =

√
π, Γ( 1

2 + n) =

 n − 1
2

n

 n!
√
π

and at the integers by Γ(n) = (n − 1)!
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5.1.3 Analyticity of Harmonic Functions

Proposition 5.2: Let Ω ⊂ Rd be open and bounded. Let u ∈ C2(Ω) be harmonic:
∆ u = 0 in Ω. Then u is real analytic in Ω.2

Proof. Fix ξ ∈ Ω. The starting point is Green’s second identity (5.3), with v(x) = Ψ(r)
where r is as defined in (5.4). Since v is singular at x = ξwe cut out a small ball around
ξ: define B(ξ, ρ) = {y ∈ Rd

| |y − ξ| < ρ} the ball of radius ρ around ξ and

Ωρ = Ω \ B(ξ, ρ).

We choose ρ small enough so that B(ξ, ρ) ⊂ Ω. The boundary of Ωρ has two compo-
nents:

∂Ωρ = ∂Ω ∪ ∂B(ξ, ρ).

Since v is harmonic in Bρ, (5.3) becomes∫
Ωρ

v ∆ u dx =

∫
∂Ω

(
v
∂u
∂n
− u

∂v
∂n

)
dS +

∫
∂B(ξ,ρ)

(
v
∂u
∂n
− u

∂v
∂n

)
dS︸                         ︷︷                         ︸

I

(5.5)

where n is the unit normal pointing outward from Ωρ, that is in B(ξ, ρ) the vector n
points toward ξ. Since v has been chosen to be the fundamental solution, we have that
v = Ψ(ρ) and ∂v

∂n = −Ψ′(ρ) on ∂B(ξ, ρ). Thus:

I =

∫
∂B(ξ,ρ)

(
v
∂u
∂n
− u

∂v
∂n

)
dS

= Ψ(ρ)
∫
∂B(ξ,ρ)

∂u
∂n

dS + Ψ′(ρ)
∫
∂B(ξ,ρ)

u dS

= −Ψ(ρ)
∫

B(ξ,ρ)
∆ u dx︸                   ︷︷                   ︸

IA

+ω−1
d ρ−(d−1)

∫
∂B(ξ,ρ)

u dS︸                       ︷︷                       ︸
IB

.

The first part

IA = −Ψ(ρ)
∫

B(ξ,ρ)
∆ u dx ≈ −∆ u(ξ)Ψ(ρ)vol(B(ξ, ρ))

tends to 0 as ρ → 0 since ∆ u is continuous at ξ and since vol(B(ξ, ρ)) ∼ ρd tends to 0
faster than the rate with which |Ψ(ρ)| tends to +∞.
Exercise 5.2: Prove that IA → 0 as ρ→ 0 rigorously (as above, this can be proved even without using the fact that u is harmonic).

The second part has the limit

IB = ω−1
d ρ−(d−1)

∫
∂B(ξ,ρ)

u dS ≈ ω−1
d ρ−(d−1)u(ξ)ωdρ

d−1 = u(ξ)

since u is continuous at ξ.
2Recall that a function f (x) is called real analytic if it is C∞ and its Taylor series converges pointwise

to f (x) for all x in a neighborhood of every point x0 in its domain.
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Exercise 5.3: Prove that IB → u(ξ) as ρ→ 0 rigorously.

It therefore follows that as ρ→ 0, the expression (5.5) tends to∫
Ω

v ∆ u dx =

∫
∂Ω

(
v
∂u
∂n
− u

∂v
∂n

)
dS + u(ξ) (5.6)

We now recall that u is harmonic, which implies that

u(ξ) =

∫
∂Ω

(
u
∂v
∂n
− v

∂u
∂n

)
dS (5.7)

where we recall that v has been chosen as v(x) = Ψ(r), with Ψ centered around an
arbitrary ξ ∈ Ω.

In (5.7) we can take as many derivatives in ξ as we would like: v depends on x and
on ξ and is infinitely differentiable in both so long as x , ξ. This implies that u ∈ C∞.
By continuing x and ξ into a complex neighborhood, the same argument implies that
u is real analytic. �

5.1.4 Gauss’ Law of Arithmetic Mean

Proposition 5.3 (Gauss’ Law of Arithmetic Mean): Let Ω ⊂ Rd be open and bounded.
Let u be harmonic in Ω. Then

u(ξ) =
1

ωdρd−1

∫
|x−ξ|=ρ

u(x) dSx

where ξ ∈ Rd and ρ > 0 are such that B(ξ, ρ) ⊂ Ω. That is, for a harmonic function u
in a closed ball, the value of u at the center equals the average of the values of u on
the surface.

Proof. Let us rewrite (5.6) in terms of the kernel K (despite the fact that u is harmonic,
we keep the term ∆ u until the last moment):

u(ξ) =

∫
Ω

K(x, ξ) ∆ u dx +

∫
∂Ω

(
u(x)

∂K(x, ξ)
∂nx

− K(x, ξ)
∂u(x)
∂nx

)
dSx

Let w be another harmonic function in Ω and define

G(x, ξ) = K(x, ξ) + w(x).

This is also a kernel with pole ξ, and can therefore replace the kernel K in the above
expression:

u(ξ) =

∫
Ω

G(x, ξ) ∆ u dx +

∫
∂Ω

(
u(x)

∂G(x, ξ)
∂nx

− G(x, ξ)
∂u(x)
∂nx

)
dSx. (5.8)

Exercise 5.4: Verify that we can indeed replace K with G.

5 – 52



Let ρ > 0 and choose

Ω = B(ξ, ρ) and w(x) = −Ψ(ρ)

so that
G(x, ξ) = K(x, ξ) −Ψ(ρ) = Ψ(|x − ξ|) −Ψ(ρ).

On ∂Ω, i.e. for x such that |x − ξ| = ρ, G satisfies

G = 0 and
∂G(x, ξ)
∂nx

= Ψ′(ρ) = ω−1
d ρ−(d−1)

so that (5.8) becomes

u(ξ) =

∫
|x−ξ|<ρ

(Ψ(|x − ξ|) −Ψ(ρ)) ∆ u(x) dx + ω−1
d ρ−(d−1)

∫
|x−ξ|=ρ

u(x) dSx. (5.9)

Recalling that u is harmonic, this becomes

u(ξ) =
1

ωdρd−1

∫
|x−ξ|=ρ

u(x) dSx

and the proof is complete. �

5.1.5 Subharmonic Functions

Considering (5.9) and noting that Ψ is an increasing function of its argument, we find
that if ∆ u(x) ≥ 0 in the ball |x − ξ| ≤ ρ, then

u(ξ) ≤
1

ωdρd−1

∫
|x−ξ|=ρ

u(x) dSx. (5.10)

A function u ∈ C(Ω) is called subharmonic if for each ξ ∈ Ω if (5.10) holds for
all ρ sufficiently small. We denote the set of subharmonic functions in Ω by
σ(Ω).

Observe that any function u ∈ C2(Ω) with ∆ u ≥ 0 is subharmonic.

Subharmonic Functions

Subharmonic functions will prove to be important in the sequel.

5.2 The Maximum Principle

5.2.1 The Weak Maximum Principle

Theorem 5.4 (The Weak Maximum Principle): Let Ω ⊂ Rd be open, bounded and
connected. Let u ∈ C2(Ω) ∩ C0(Ω) and assume that ∆ u ≥ 0 in Ω. Then

max
Ω

u = max
∂Ω

u (5.11)
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Proof. First we note that since ∂Ω ⊂ Ω, necessarily max
Ω

u ≥ max∂Ω u. Hence we need
to prove that max

Ω
u ≤ max∂Ω u.

Let us start with the case of a strict inequality: suppose that a function v satisfies
∆ v > 0 in Ω. Suppose, by contradiction, that max

Ω
v > max∂Ω v. Then there exists

some ξ ∈ Ω such that v(ξ) = max
Ω

v. The point ξ is a local maximum, so vxk(ξ) = 0 and
vxkxk(ξ) ≤ 0 for all k = 1, . . . , d. But this means that

∑
k vxkxk(ξ) ≤ 0, contradicting the

assumption that ∆ v > 0 in Ω. Hence max
Ω

v = max∂Ω v.

Returning to the function u: for any ε > 0, consider the auxiliary function v =
u + ε|x|2. Since ∆ |x|2 > 0, it follows that ∆ v > 0 (strict inequality). Then by the
preceding argument, max

Ω
v = max∂Ω v. This implies:

max
Ω

u + min
Ω
ε|x|2 ≤ max

Ω
(u + ε|x|2)

= max
Ω

v

= max
∂Ω

v

= max
∂Ω

(u + ε|x|2) ≤ max
∂Ω

u + max
∂Ω

ε|x|2

This is true for any ε > 0, so it follows that max
Ω

u ≤ max∂Ω u as required. �

Corollary 5.5: 1. If in Theorem 5.4 we assume that ∆ u = 0, then (5.11) holds also for
−u, and since min u = −max(−u) we obtain

min
Ω

u = min
∂Ω

u.

2. Furthermore, using the fact that for q ∈ R the absolute value satisfies |q| =
max(q,−q), we have that if ∆ u = 0 then

max
Ω
|u| = max

∂Ω
|u|.

Corollary 5.6: In Theorem 5.4 assume that ∆ u = 0. Then if u = 0 on ∂Ω, then u = 0 in
Ω.

Consequently, we can strengthen Proposition 5.1 to not require derivatives on ∂Ω:

Proposition 5.7 (Stronger Uniqueness Theorem): The boundary value problem (5.1)
has at most one solution in C2(Ω) ∩ C0(Ω).

5.2.2 The Strong Maximum Principle
We can now prove a stronger version of the maximum principle:

Theorem 5.8 (The Strong Maximum Principle): Let Ω ⊂ Rd be open, bounded and
connected. Let u ∈ C(Ω) be subharmonic in Ω. Then either u is constant in Ω, or

u(ξ) < sup
Ω

u for all ξ ∈ Ω.
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Proof. Let M = supΩ u ∈ R∪{+∞} and decompose Ω into the disjoint union Ω = Ω1tΩ2
where

Ω1 = {ξ ∈ Ω | u(ξ) = M} and Ω2 = {ξ ∈ Ω | u(ξ) < M}.

Since u is continuous in Ω the set Ω2 is open. We shall show that Ω1 is also open. Let
ξ ∈ Ω1. Then since u is subharmonic, from (5.10) we have that for small enough ρ > 0

0 ≤
∫
|x−ξ|=ρ

u(x) dSx − ωdρ
d−1u(ξ)

=

∫
|x−ξ|=ρ

(u(x) − u(ξ)) dSx

=

∫
|x−ξ|=ρ

(u(x) −M) dSx.

By the definition of M, u(x)−M ≤ 0. Since u is continuous, so is u(x)−M. We therefore
have that for every ρ > 0 sufficiently small, the integral of a non-positive continuous
integrand is non-negative. The only way for this to be true is if the integrand is
identically 0. This means that for all ρ > 0 sufficiently small, u(x) = M for all x such
that |x − ξ| = ρ. Therefore there is a neighborhood of ξ that belongs to Ω1, implying
that Ω1 is open.

The set Ω is open, bounded and connected. As such, in cannot be decomposed into
two disjoint open nonempty sets. It therefore follows that either Ω1 or Ω2 is empty. �

It immediately follows that:

Corollary 5.9: Let Ω ⊂ Rd be open, bounded and connected. Let u ∈ C0(Ω) be
subharmonic in Ω. Then either u is constant in Ω, or

u(ξ) < max
∂Ω

u for all ξ ∈ Ω.

5.3 Integral Representation of Solutions

The goal here is to be able to derive a formula for the values of a harmonic function in
a domain, only using its values on the boundary. This is done in the spirit of Gauss’
Law of Arithmetic Mean and the formula (5.8).

5.3.1 The Green’s Function
In Section 5.1 we started with the kernel K(x, ξ), from which we defined another kernel
G(x, ξ) = K(x, ξ) + w(x) where w was a harmonic function. Therefore kernels are not
uniquely defined. However, among all kernels there is a special one called a Green’s
function:
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A kernel G(x, ξ) is called a Green’s function if

G(x, ξ) = K(x, ξ) + v(x, ξ), where x ∈ Ω, ξ ∈ Ω, x , ξ,

if v(·, ξ) ∈ C2(Ω) satisfies ∆x v = 0 is such that

G(x, ξ) = 0 for x ∈ ∂Ω, ξ ∈ Ω.

Green’s Function

Lemma 5.10: For any domain Ω there is a unique Green’s function.

Proof. Suppose that G1 and G2 are two Green’s functions, with

G1(x, ξ) = K(x, ξ) + v1(x, ξ) and G2(x, ξ) = K(x, ξ) + v2(x, ξ)

Then G1(x, ξ) − G2(x, ξ) = v1(x, ξ) − v2(x, ξ). For any ξ ∈ Ω, both v1 and v2 satisfy the
equation {

∆x v(·, ξ) = 0 in Ω,

v(·, ξ) = −K(·, ξ) on ∂Ω.
(5.12)

However, from Proposition 5.1 we know that this problem has a unique solution, so
that v1 = v2. �

In the expression (5.8), which we repeat here,

u(ξ) =

∫
Ω

G(x, ξ) ∆ u dx +

∫
∂Ω

(
u(x)

∂G(x, ξ)
∂nx

− G(x, ξ)
∂u(x)
∂nx

)
dSx,

if G is the Green’s function and u is harmonic, we have

u(ξ) =

∫
∂Ω

u(x)
∂G(x, ξ)
∂nx

dSx, where ξ ∈ Ω.

So the values of u in Ω are uniquely determined by the values of u on ∂Ω!

The Green’s Function for a Ball

To explicitly write a formula for the Green’s function of a particular domain Ω one
would need an explicit solution to the problem (5.12) recalling that

K(x, ξ) = Ψ(|x − ξ|) =


log |x−ξ|

2π d = 2,
|x−ξ|2−d

(2−d)ωd
d ≥ 3.

This is generally impossible. However, when Ω possesses certain symmetries this
becomes feasible. One example is when Ω is a ball of some radius a > 0 (without loss
of generality, suppose that the ball is centered around the origin):

Ω = B(0, a) = {y ∈ Rd
| |y| < a}.

5 – 56



Given ξ ∈ B(0, a), define its reflection with respect to ∂B(0, a):

ξ∗ =
a2

|ξ|2
ξ

which is a point outside the ball: ξ∗ ∈ Rd
\ B(0, a). The point ξ∗ is such that

|x − ξ∗|
|x − ξ|

=
a
|ξ|

= const for any x ∈ ∂B(0, a).

This can be seen by some elementary geometric considerations.

Proposition 5.11: The Green’s function for the ball B(0, a) is given by

G(x, ξ) = K(x, ξ) − K
( a
|ξ|

x,
a
|ξ|
ξ∗

)
=

1
2π

log
|x − ξ|
|x − ξ∗|

−
1

2π
log

a
|ξ|

for d = 2 and by

G(x, ξ) = K(x, ξ) −
(
|ξ|
a

)2−d
K(x, ξ∗)

=
1

(2 − d)ωd

(
|x − ξ|2−d

−

(
|ξ|
a

)2−d
|x − ξ∗|2−d

)
for d ≥ 3.

Proof. This is an exercise. �

5.3.2 Poisson’s Integral Formula

Lemma 5.12: Let Ω = B(0, a) = {y ∈ Rd
| |y| < a} be the open ball of radius a > 0

centered around the origin and let G(x, ξ) be the associated Green’s function, as defined
in Proposition 5.11. Then for ξ ∈ Ω and x ∈ ∂Ω,

∂G(x, ξ)
∂nx

=
1

aωd

a2
− |ξ|2

|x − ξ|d

Proof. This is an exercise. �

The function

H(x, ξ) :=
∂G(x, ξ)
∂nx

=
1

aωd

a2
− |ξ|2

|x − ξ|d

is called the Poisson kernel. For u harmonic inside Ω = B(0, a), from (5.8)
Poisson’s integral formula follows:

u(ξ) =

∫
∂Ω

H(x, ξ)u(x) dSx for ξ ∈ Ω. (5.13)

The Poisson Kernel and Poisson’s Integral Formula
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The Poisson kernel satisfies several important properties:

1. For all x ∈ Ω and ξ ∈ Ω with x , ξ, H(x, ξ) ∈ C∞.

2. For all x ∈ ∂Ω and ξ ∈ Ω, ∆ξ H(x, ξ) = 0.

3. For all ξ ∈ Ω,
∫
∂Ω

H(x, ξ) dSx = 1.

4. For all x ∈ ∂Ω and ξ ∈ Ω, H(x, ξ) > 0.

5. If ζ ∈ ∂Ω, then
lim
ξ→ζ
ξ∈Ω

H(x, ξ) = 0

uniformly in x ∈ Ω for |x − ζ| > δ > 0.

Properties of the Poisson Kernel

Verifying the properties of the Poisson kernel. Properties 1, 4 and 5 follow directly from the
formula for H, and are left as an exercise.

Property 2. This can also be shown directly from the expression for H; alterna-
tively, it follows from the facts that (i) H(x, ξ) =

∂G(x,ξ)
∂nx

, (ii) ∆x G(x, ξ) = 0, and (iii)
G(x, ξ) = G(ξ, x).

Property 3. This follows from applying (5.13) to the function u ≡ 1. �

5.3.3 Constructing a Harmonic Function in a Ball from Boundary-
Values

The preceding discussion immediately leads to the following result where u is con-
structed in Ω from given values f on ∂Ω:

Theorem 5.13: Let Ω = B(0, a) = {y ∈ Rd
| |y| < a} be the open ball of radius a > 0

centered around the origin. Let f be continuous on ∂Ω. Define u(ξ) to be equal to f on
∂Ω and by the formula

u(ξ) =

∫
∂Ω

H(x, ξ) f (x) dSx (5.14)

for ξ ∈ Ω. Then u ∈ C(Ω) ∩ C∞(Ω) and ∆ u = 0 in Ω.

Proof. The proof relies on the five properties of H. Taking derivatives of u(ξ) in (5.13),
these can be commuted with the integration in the right hand side, then Properties 1
and 2 imply that u ∈ C∞(Ω) and ∆ u = 0 in Ω.

We therefore only need to show that u ∈ C0(Ω), and specifically the continuity at
the boundary. Fix ζ ∈ ∂Ω and let ξ ∈ Ω; we want to estimate the difference u(ξ) − f (ζ).
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Using Property 3, we can write, for δ > 0,

u(ξ) − f (ζ) =

∫
∂Ω

H(x, ξ)( f (x) − f (ζ)) dSx

=

∫
∂Ω∩B(ζ,δ)

H(x, ξ)( f (x) − f (ζ)) dSx

+

∫
∂Ω∩B(ζ,δ)C

H(x, ξ)( f (x) − f (ζ)) dSx =: I1 + I2.

The term I1. Since f ∈ C0(∂Ω), for any ε > 0 there exists δ = δ(ε) > 0 such that
whenever x ∈ B(ζ, δ) ∩ ∂Ω, | f (x) − f (ζ)| < ε. Properties 3 and 4 consequently imply that
|I1| < ε.

The term I2. Define M = max∂Ω | f |, let ε, δ be as above and let ξ ∈ Ω. From
Properties 4 and 5 we know that H(x, ξ) > 0 for x ∈ ∂Ω, and H(x, ξ) → 0 uniformly in
x as ξ approaches ∂Ω. Therefore there exists δ′ = δ′(ε, δ(ε)) > 0 such that whenever
ξ ∈ Ω ∩ B(ζ, δ′) and x ∈ ∂Ω ∩ B(ζ, δ)C,

H(x, ξ) <
ε

2Mωdad−1

(see Figure 5.1). It follows that also |I2| < ε, and consequently

|u(ξ) − f (ζ)| < 2ε for ξ ∈ Ω ∩ B(ζ, δ′)

which shows that u is continuous at the boundary point ζ.

Figure 5.1: The construction in the proof of Theorem 5.13.

�

Exercise 5.5: Verify the details behind the estimates |I1| < ε and |I2| < ε.
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5.3.4 Completeness and Compactness of the Set of Harmonic Func-
tions

The formula (5.14) leads to estimates on derivatives of harmonic functions which, in
turn, allow us to show that the space of harmonic functions is complete.

Proposition 5.14: Let Ω ⊂ Rd be open and bounded. Let uk ∈ C2(Ω) ∩ C0(Ω), k =
1, 2, . . . , be a sequence of harmonic functions in Ω that converges uniformly on ∂Ω to
some function f . Then uk also converge uniformly in Ω to some limit u. Moreover, u
is harmonic in Ω (in particular, u ∈ C∞(Ω)).

Proof. Note that since all the functions uk are continuous on ∂Ω, their uniform limit f
is also continuous on ∂Ω.

Claim: There exists u ∈ C0(Ω) such that the sequence uk converges to u uniformly in
Ω.

Exercise 5.6: Prove the preceding claim.

To show that u is infinitely differentiable and harmonic we need to obtain uniform
estimates of derivatives of the functions uk on compact subsets of Ω. These will imply
that all partial derivatives of the sequence uk converge uniformly as well (albeit not
on the boundary ∂Ω). Let η ∈ Ω and let δ(η) = d(η, ∂Ω) be the distance from η to the
boundary of Ω, which is necessarily positive, δ(η) > 0. Take some a ∈ (0, δ(η)) and
consider the ball B(η, a) ⊂ Ω. Then (5.14) can be applied, and we have

uk(ξ) =

∫
∂B(η,a)

H(x, ξ)uk(x) dSx for any ξ ∈ B(η, a).

Let vk(y) = uk(y + η). Then the above expression becomes centered at the origin:

vk(ζ) =

∫
∂B(0,a)

H(x, ζ)vk(x) dSx for any ζ ∈ B(0, a).

Taking a derivative with respect to ζi and plugging in ζ = 0, one finds

∂ζivk(0) =

∫
∂B(0,a)

∂ζiH(x, ζ)
∣∣∣
ζ=0vk(x) dSx =

d
ωdad+1

∫
∂B(0,a)

xivk(x) dSx

Exercise 5.7: Verify the above computation.

Returning to uk, the evaluation at ζ = 0 is now replaced with ξ = η and we have

∂ξiuk(η) =
d

ωdad−1

∫
∂B(0,a)

xiuk(x + η) dSx

=
d

ωdad−1

∫
∂B(η,a)

(xi − ηi)uk(x) dSx.

Estimating, we find

|∂ξiuk(η)| ≤
d
a

max
∂B(η,a)

|uk(x)|.
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Exercise 5.8: Verify the above estimate.

Since the sequence uk converges uniformly to u in Ω, there exists N such that for all
k ≥ N, max

Ω
|uk| ≤ 2 max

Ω
|u| so that we have the uniform bound

|∂ξiuk(η)| ≤
2d
a

max
∂B(η,a)

|u(x)|.

The above estimate is true for any a ∈ (0, δ(η)), and, in particular, by letting a→ δ(η)
we deduce the estimate

|∂ξiuk|(η) ≤
2d
δ(η)

max
Ω
|u| for all η ∈ Ω, k ≥ N, i = 1, . . . , d.

One can easily see that we could have taken as many mixed partial derivatives of
uk as we wish, and their resulting estimate would still be in terms of max

Ω
|u|, with

the numerical constant in front changing (and always depending continuously on η),
though potentially becoming unbounded as η approaches the boundary ∂Ω. Therefore,
on any compact subset K ⊂ Ω any mixed partial derivatives of uk converge uniformly
to the same mixed partial derivatives of u (here we use the fact that δ(η) is bounded
uniformly away from 0 for any η ∈ K). It follows that u is harmonic in Ω and belongs
to C∞(Ω). �

5.4 Existence of Solutions for the Dirichlet Problem (Per-
ron’s Method)

We now are finally ready to solve the problem (5.1), which we restate here,{
∆ u = 0 in Ω,

u = f on ∂Ω,

where Ω ⊂ Rd is open, bounded and connected.3 The key to solving this problem is
the use of subharmonic functions. We remind the reader that we denote by σ(Ω) the
set of all subharmonic functions in Ω.

To show that the problem (5.1) has a solution we will look at the set{
v ∈ σ(Ω) ∩ C0(Ω)

∣∣∣ v ≤ f on ∂Ω
}

and show that the supremum over all such functions v is the desired solution.

Idea of the Proof

This proof, due to Oscar Perron (1880-1975), is exactly 100 years old (as of the writing
these notes): published in December 1923! 4

3Ω will also be required to satisfy the barrier postulate, see below. Eventually Ω will not be required
to be connected, this is only a requirement coming from the maximum principle.

4O. Perron. Eine neue Behandlung der ersten Randwertaufgabe für ∆u = 0. Math. Z. 18, 42-54 (1923).
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Notation: For brevity, we denote the arithmetic mean of a function u on ∂B(ξ, ρ) by
Mu(ξ, ρ):

Mu(ξ, ρ) =
1

ωdρd−1

∫
|x−ξ|=ρ

u(x) dSx

Then the definition of subharmonicity means that a function u ∈ σ(Ω) satisfies
u(ξ) ≤Mu(ξ, ρ) for all ξ ∈ Ω and all ρ > 0 sufficiently small.

Exercise 5.9: Prove that the set σ(Ω) is closed under addition.

Exercise 5.10: Prove that a harmonic function is also subharmonic.

Definition 5.15: Let u ∈ C0(Ω) and let ξ ∈ Ω and ρ > 0 be such that B(ξ, ρ) ⊂ Ω.
Define uξ,ρ ∈ C0(Ω) as the function that is obtained from u by replacing u inside B(ξ, ρ)
by a harmonic function: {

uξ,ρ = u in Ω \ B(ξ, ρ),

∆ uξ,ρ = 0 in B(ξ, ρ).

There exists such a function by Theorem 5.13, since we only need to find a harmonic
function in the ball B(ξ, ρ). Uniqueness follows from Proposition 5.7. Hence uξ,ρ is
well-defined.

5.4.1 Preliminary Lemmas

Lemma 5.16: For u ∈ σ(Ω) and B(ξ, ρ) ⊂ Ω we have

u(x) ≤ uξ,ρ(x) for all x ∈ Ω,

and uξ,ρ ∈ σ(Ω).

Proof. The definition of uξ,ρ implies that u = uξ,ρ in Ω \ B(ξ, ρ). So we only need to
consider the set B(ξ, ρ). In this set, u is subharmonic and uξ,ρ is harmonic. Since uξ,ρ is
harmonic there, so is −uξ,ρ. Using Exercise 5.9 we see that

u − uξ,ρ ∈ σ(B(ξ, ρ)).

Additionally, u − uξ,ρ belongs to C0(B(ξ, ρ)),

u − uξ,ρ vanishes on ∂B(ξ, ρ).

The Weak Maximum Principle (Theorem 5.4) implies that u − uξ,ρ ≤ 0 in B(ξ, ρ). We
conclude that u ≤ uξ,ρ in Ω.

It is left to show that uξ,ρ ∈ σ(Ω). This requires us to show that for every ζ ∈ Ω
there exists τ0 = τ0(ζ) > 0 such that for all τ ∈ (0, τ0), uξ,ρ(ζ) ≤ Muξ,ρ(ζ, τ). This is true
for ζ ∈ Ω \ B(ξ, ρ), where uξ,ρ = u and u is subharmonic. It is also true for ζ ∈ B(ξ, ρ)
where uξ,ρ is harmonic. So it only remains to be shown for ζ ∈ ∂B(ξ, ρ). For such ζ
we know that uξ,ρ(ζ) = u(ζ) and that u(ζ) ≤ Mu(ζ, τ) for all τ > 0 sufficiently small
since u ∈ σ(Ω). However, since u ≤ uξ,ρ in Ω (we have just proven this), it follows that
Mu(ζ, τ) ≤ Muξ,ρ(ζ, τ). Therefore we have that uξ,ρ(ζ) ≤ Muξ,ρ(ζ, τ) for ζ ∈ ∂B(ξ, ρ) and
for all τ > 0 sufficiently small, which completes the proof. �
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Lemma 5.17: Let u ∈ σ(Ω). For any ξ ∈ Ω and any ρ > 0 such that B(ξ, ρ) ⊂ Ω, the
inequality u(ξ) ≤Mu(ξ, ρ) holds.

Remark: Note that, by definition, any u ∈ σ(Ω) satisfies u(ξ) ≤ Mu(ξ, ρ) for all ρ > 0
sufficiently small. In this lemma, however, we need to prove that this inequality holds
for all ρ > 0 such that B(ξ, ρ) ⊂ Ω.

Proof. Let u ∈ σ(Ω) and B(ξ, ρ) ⊂ Ω. From Lemma 5.16 we know that u(x) ≤ uξ,ρ(x) for
all x ∈ Ω, and, in particular, u(ξ) ≤ uξ,ρ(ξ). Since uξ,ρ is defined to be harmonic in B(ξ, ρ)
it follows that uξ,ρ(ξ) = Muξ,ρ(ξ, ρ) from Gauss’ Law of Arithmetic Mean (Proposition
5.3). But since uξ,ρ = u on ∂B(ξ, ρ), it follows that Muξ,ρ(ξ, ρ) = Mu(ξ, ρ). �

Lemma 5.18: A function u is harmonic in Ω if and only if u,−u ∈ σ(Ω).

Proof. Direction⇒: If u is harmonic then so is −u. The conclusion follows from Exer-
cise 5.10.

Direction⇐: Assume that u,−u ∈ σ(Ω). Then by Lemma 5.16, for any B(ξ, ρ) ⊂ Ω,

u(x) ≤ uξ,ρ(x) and − u(x) ≤ −uξ,ρ(x) for all x ∈ Ω,

so that u(x) = uξ,ρ(x) for all x ∈ Ω, implying that u is harmonic in Ω. �

Lemma 5.19: Let u ∈ C0(Ω) and suppose that for any ξ ∈ Ω there exists ρ0 = ρ0(ξ) > 0
such that for all ρ ∈ (0, ρ0) the equality u(ξ) = Mu(ξ, ρ) holds. Then u is harmonic in Ω.

Proof. This is left as an exercise. �

5.4.2 Construction of the Candidate Solution

Let f ∈ C0(∂Ω). Define the set

σ f (Ω) =
{

v ∈ σ(Ω) ∩ C0(Ω)
∣∣∣ v ≤ f on ∂Ω

}
and for any x ∈ Ω the function

w f (x) = sup
v∈σ f (Ω)

v(x).

This function will (later) be our candidate solution to (5.1).

Candidate Solution to the Dirichlet Problem

Lemma 5.20: Define
m∗ = min

∂Ω
f and m∗ = max

∂Ω
f .

Then m∗ ∈ σ f (Ω) (therefore σ f (Ω) is not empty) and any u ∈ σ f (Ω) satisfies u(x) ≤ m∗

for any x ∈ Ω (therefore w f (x) is well-defined).

Proof. This is left as an exercise. �
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Lemma 5.21: Let u1, . . . ,uk ∈ σ f (Ω) and for all x ∈ Ω define v(x) = max1≤ j≤k u j(x).
Then v ∈ σ f (Ω).

Proof. First we note that v ∈ C0(Ω).

Exercise 5.11: Prove that v ∈ C0(Ω).

So it remains to show that v ∈ σ(Ω) and that v ≤ f on ∂Ω. This latter fact is obvious
from the definition of v. To show subharmonicity, we use the fact that u1, . . . ,uk are
subharmonic to write (for all ρ > 0 sufficiently small):

v(ξ) = max
1≤ j≤k

u j(ξ) ≤ max
1≤ j≤k

Mu j(ξ, ρ) ≤Mv(ξ, ρ).

Exercise 5.12: Prove the last inequality above.

This proves that v ∈ σ(Ω), and the proof is complete. �

As mentioned before, w f is our candidate solution to (5.1). The following proposi-
tion proves that w f is indeed harmonic. What will remain to be shown is that w f = f
on ∂Ω.

Proposition 5.22: The function w f is harmonic in Ω.

Proof. Let ξ ∈ Ω and let 0 < ρ′ < ρ be such that B(ξ, ρ′) ⊂ B(ξ, ρ) ⊂ Ω. Let {xk
}
∞

k=1 ⊂

B(ξ, ρ′) be a sequence of points in B(ξ, ρ′). See Figure 5.2. By the definition of w f , there

are functions {u j
k}
∞

j,k=1 ⊂ σ f (Ω) such that

lim
j→+∞

u j
k(xk) = w f (xk) for every k ∈N, (5.15)

where the convergence is from below. Define

u j(x) = max
{
m∗,u

j
1(x),u j

2(x), . . . ,u j
j(x)

}
for all x ∈ Ω, j ∈N.

By Lemma 5.21, u j
∈ σ f (Ω) for all j ∈N. Moreover, u j(x) ≥ u j

k(x) for all x ∈ Ω and j ≥ k

by definition. We can sandwich u j between u j
k (k ≤ j) and w f , which means that (5.15)

can be replaced by

lim
j→+∞

u j(xk) = w f (xk) for every k ∈N, (5.16)

and each u j satisfies
m∗ ≤ u j

≤ m∗. (5.17)

Consider u j
ξ,ρ

(see Definition 5.15) instead of u j. Then the sequence u j
ξ,ρ

still satisfies

(5.16) and (5.17), and its elements still belong to σ f (Ω).

Exercise 5.13: Prove the above statement about u j
ξ,ρ

.
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Figure 5.2: The construction in the proof of Proposition 5.22.

In addition, the sequence u j
ξ,ρ

is harmonic in B(ξ, ρ). From Proposition 5.14 (and

using (5.17)) it follows that there exists a subsequence u j`
ξ,ρ

(x) converging to a harmonic

function W(x) for all x ∈ B(ξ, ρ′). The function W could depend upon the choice of points xk

and upon the choice of subsequence j`.

Exercise 5.14: Prove the above statement about the convergence of a subsequence and its limit W being harmonic.

By (5.16) it follows that

w f (xk) = W(xk) for all k. (5.18)

Continuity of w f . Let x ∈ B(ξ, ρ′). Choose the sequence xk so that it converges to x
(see Figure 5.3). Corresponding to this sequence, there exists a function W as discussed
above. Assuming, without loss of generality, that x1 = x, we have W(x) = W(x1). We
know that W is harmonic in B(ξ, ρ′), so in particular it is continuous there, hence
limk→∞W(xk) = W(x). From (5.18) it follows that limk→∞w f (xk) also exists and is
equal to W(x) = W(x1) = w f (x1). So w f is continuous at x. Since x was arbitrary,
w f ∈ C0(B(ξ, ρ′)).

Harmonicity of w f . Now choose the sequence xk to be dense in B(ξ, ρ′). Then w f
agrees with the corresponding harmonic function W on this dense set. Therefore, by
continuity, w f = W everywhere in B(ξ, ρ′).

This shows that w f is continuous and harmonic in a neighborhood of ξ. Since ξ ∈ Ω
was arbitrary, we find that w f is continuous and harmonic in Ω. �
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Figure 5.3: Continuity of w f .

5.4.3 The Barrier Postulate

To prove that for each η ∈ ∂Ω we have that limx∈Ω
x→η

w f (x) = f (η), we impose a new

condition on the boundary: 5

Assume that for each η ∈ ∂Ω there exists a barrier function: a function
Qη ∈ C0(Ω) ∩ σ(Ω) such that

Qη(η) = 0 and Qη(x) < 0 for all x ∈ ∂Ω \ {η}.

Barrier Postulate

Proposition 5.23: For each η ∈ ∂Ω,

lim inf
x∈Ω
x→η

w f (x) ≥ f (η). (5.19)

Proof. Fix constants ε,K > 0 and consider the function

u(x) = f (η) − ε + KQη(x) for all x ∈ Ω.

Then u ∈ C0(Ω) ∩ σ(Ω). Moreover,

u(x) < f (η) − ε for any x ∈ ∂Ω \ {η}

and
u(η) = f (η) − ε.

The continuity of f implies that there exists δ = δ(ε) > 0 such that for any x ∈ ∂Ω with
|x − η| < δ, | f (x) − f (η)| < ε. It follows that

u(x) < f (x) for all x ∈ ∂Ω, |x − η| < δ. (5.20)

5Over the years this condition has been weakened, and finding yet weaker conditions remains an
active field of research. Here we stick with this classical condition.
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Since the function Qη is negative for all x ∈ ∂Ω \ {η}, it is uniformly negative for all
x ∈ ∂Ω \ {η}with |x − η| ≥ δ.
Exercise 5.15: Prove the above statement.

It follows that by choosing K (depending on ε) large enough, we can ensure that
(5.20) holds also for x ∈ ∂Ω with |x − η| ≥ δ. This implies that u ∈ σ f (Ω), and it follows
(from the definition of w f ) that

u(x) ≤ w f (x) for all x ∈ Ω.

Consequently
f (η) − ε = lim

x→η
u(x) ≤ lim inf

x∈Ω
x→η

w f (x).

Taking the limit ε→ 0 completes the proof. �

We are now ready to prove that the limit of w f at the boundary exists, thereby
completing the task of solving (5.1):

Proposition 5.24: For each η ∈ ∂Ω,

lim
x∈Ω
x→η

w f (x) = f (η). (5.21)

Proof. We already know that lim infx∈Ω
x→η

w f (x) ≥ f (η), so we just need to prove that

lim supx∈Ω
x→η

w f (x) ≤ f (η). We do this by applying all previous arguments to − f , as

follows. Consider the function w− f , defined as

w− f (x) = sup
v∈σ− f (Ω)

v(x).

Using the fact that sup(−v) = − inf v, we denote U = −v to get

−w− f (x) = inf U(x)

where the infimum is taken over all −U ∈ C0(Ω) ∩ σ(Ω) satisfying −U ≤ − f on ∂Ω.
Any such U and any v ∈ σ f (Ω) satisfy v − U ≤ 0 on ∂Ω. Since both v and −U are
subharmonic, the Weak Maximum Principle (Theorem 5.4) implies that v−U ≤ 0 in Ω.
Considering that

w f (x) = sup v(x) and − w− f (x) = inf U(x)

where the infimum and supremum are taken over the sets specified above, the fact that
v −U ≤ 0 in Ω implies that

w f (x) ≤ −w− f (x) for all x ∈ Ω.

The result of Proposition 5.23 applied to w− f (x) leads to

lim inf
x∈Ω
x→η

w− f (x) ≥ − f (η) for all η ∈ ∂Ω.

Combining the last two observations we conclude that

lim sup
x∈Ω
x→η

w f (x) ≤ lim sup
x∈Ω
x→η

(
−w− f (x)

)
= − lim inf

x∈Ω
x→η

w− f (x) ≤ f (η)

which concludes the proof. �
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We have therefore just proven:

Theorem 5.25: Let Ω ⊂ Rd be an open and bounded domain satisfying the barrier
postulate. Let f ∈ C0(∂Ω). Then the problem{

∆ u = 0 in Ω,

u = f on ∂Ω.

has a (unique) solution in C0(Ω) ∩ C2(Ω).

Exercise 5.16: Why do we not require that Ω be connected? (recall that each time we use the Maximum Principle we implicitly
use the fact that the domain is connected)

Exercise 5.17: Prove that a strictly convex domain satisfies the barrier postulate. 6

6Ω is strictly convex if through each η ∈ ∂Ω there passes a hyperplane that intersects Ω only at η.
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