
6 The Vlasov-Maxwell System: Conditional Global Ex-

istence

The proof of existence and uniqueness for the Vlasov-Poisson system relied heavily on the

elliptic structure of Poisson’s equation in order to obtain bounds for the momentum of the

“fastest” particle, P (t). These tools are not available to us here, and, indeed, an a priori

bound on P (t) is still an open problem.31

6.1 The Glassey-Strauss Theorem

We recall that the Vlasov-Maxwell system describes the evolution of a pdf f(t, x, p) : R
+

⇥
R3 ⇥ R3 ! R

+

due to electromagnetic forces. It reads

@f

@t
(t, x, p) + v ·rxf(t, x, p) + (Ef (t, x) + v ⇥Bf (t, x)) ·rpf(t, x, p) = 0, (6.1)

r ·Ef = ⇢f , r ·Bf = 0, r⇥Ef = �@Bf

@t
, r⇥Bf = jf +

@Ef

@t
, (6.2)

where

⇢f (t, x) =

Z

Rn

f(t, x, p) dp = particle density,

jf (t, x) =

Z

Rn

f(t, x, p)v dp = current density,

and

classical case v = p,

relativistic case v =
p

p

1 + |p|2
.

The most famous existence and uniqueness results – due to Glassey and Strauss [Glassey1986]

– is conditional in the sense that it requires momenta to be bounded in time though such a

condition is not a priori known to hold. In this section we shall sketch the proof.

Theorem 6.1 (Conditional Existence of Classical Solutions (Relativistic Case)).

Let f
0

(x, p) 2 C1

0

(R3 ⇥ R3) with f
0

� 0, and let E(0, x) = E
0

(x) and B(0, x) = B
0

(x) be

such that r · E
0

= ⇢f0 and r ·B
0

= 0. Assume that there exists a function �(t) such that

for all x, f(t, x, p) = 0 for |p| > �(t). Then there exists a unique classical global solution

f(t, x, p) for the system (6.1)-(6.2) with f(0, ·, ·) = f
0

in the relativistic case.

Remark 6.2. Note that the electromagnetic fields satisfy wave equations which require

additional initial data (see Section 5). Hence the initial data (E
0

(x),B
0

(x)) must be com-

plemented by another pair (E
1

(x),B
1

(x)). However these (dynamic) conditions are not

reflected in the (static) problem at time t = 0.

6.2 A New Basis in Spacetime

Observe that the fields satisfy the wave equations

�⇤Ef = (@2

t ��x)Ef = �rx⇢f � @tjf ,

�⇤Bf = (@2

t ��x)Bf = rx ⇥ jf .

31Such bounds exists in some special cases, for instance if assuming the initial data is “small” in some

sense [Glassey1987a], or if the system possesses some symmetries [Glassey1990,Glassey1997].
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with initial data (E
0

,E
1

) and (B
0

,B
1

), respectively. We know that there is no gain in

regularity – that is, the regularity of the fields is at most the same regularity as of the right

hand side. In the proof that shall follow below, we will employ an iterative scheme similar to

the one used for solving Vlasov-Poisson: the vector field of the Nth iterate will be obtained

from the fields of the N � 1st iterate which, in turn, are solutions to wave equations. The

right hand side of these equations contain moments of f in p di↵erentiated in x. Hence, a

priori we expect to have a loss in derivatives.

This loss of derivatives can be overcome if replacing the usual coordinates in spacetime

by carefully chosen ones that respect the symmetries of the problem.

6.2.1 Representation of the Fields and Their Derivatives

It is convenient to work in coordinates that respect the symmetries of the Vlasov equation

(free transport) and of Maxwell’s equations (the light cone). That is, we wish to replace the

partial derivatives @t and @x
i

by suitably chosen directional derivatives. Fix a point x 2 R3.

A signal arriving at x at time t from a di↵erent point y 2 R3 would have had to leave y at

time t� |x� y| (we have taken the speed of light to be 1). Hence we define:

S := @t + v ·rx

Tif := @y
i

[f(t� |x� y|, y, p)], i = 1, 2, 3.

Inverting, one has the representation:

@t =
S � v · T
1 + v · !

@x
i

= Ti +
!i

1 + v · ! (S � v · T ) = !iS

1 + v · ! +
3

X

j=1

✓

�ij �
!ivj

1 + v · !

◆

Tj .

where

! =
y � x

|y � x| .

Representation of the Fields. We use the new coordinates to express the fields.

Proposition 6.3. Under the hypotheses of Theorem 6.1 the fields admit the following

representation:

E(t, x) = E
0

(t, x) +ET (t, x) +ES(t, x) and B(t, x) = B
0

(t, x) +BT (t, x) +BS(t, x)

where

Ei
T (t, x) = �

Z

|y�x|t

Z

R3

(!i + vi)(1� |v|2)
(1 + v · !)2 f(t� |y � x|, y, p) dp dy

|y � x|2 ,

Ei
S(t, x) = �

Z

|y�x|t

Z

R3

!i + vi
1 + v · ! (Sf)(t� |y � x|, y, p) dp dy

|y � x|

and similar expressions for B.

Proof. Let us show this for E. We know that

�⇤Ei = �@x
i

⇢� @tj
i = �

Z

R3

(@x
i

f + v@tf) dp.
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We express the operator @x
i

+ v@t appearing in the integrand on the right hand side as

@x
i

+ v@t =
(!i + vi)S

1 + v · ! +
3

X

j=1

✓

�ij �
(!i + vi)vj
1 + v · !

◆

Tj .

Now one proceeds by applying Duhamel’s principle (Theorem 5.16) to the resulting inho-

mogeneous wave equation for Ei and integrating by parts (the full details can be found

in [Glassey1996]). The proof for B is analogous.

Representation of the Derivatives of the Fields. We have expressions analogous to

the one obtained in Proposition 6.3:

Proposition 6.4. Under the hypotheses of Theorem 6.1 the partial derivatives of the fields

admit the following representation, for i, k = 1, 2, 3:

@kE
i = (@kE

i)
0

+

Z

rt

Z

R3

a(!, v)f dp
dy

r3
+

Z

|!|=1

Z

R3

d(!, v)f(t, x, p) d! dp

+

Z

rt

Z

R3

b(!, v)Sf dp
dy

r2
+

Z

rt

c(!, v)S2f dp
dy

r

where f, Sf, Sf without explicit arguments are evaluated at (t� |x� y|, y, p) and r = |y�x|.
The functions a, b, c, d are smooth except at 1+v ·! = 0, have algebraic singularities at such

points, and
R

|!|=1

a(!, v) d! = 0. Therefore the first integral converges if f is su�ciently

smooth. Similar expressions exist for the derivatives of B.

Proof. This is obtained from applying @
@x

k

to the expressions obtained in Proposition 6.3.

For the long computation involved we refer to [Glassey1996]. For simplicity and future

reference we shall write the expression for @kEi as:

@kE
i = @kE

i
0

+ @kE
i
TT � @kE

i
TS + @kE

i
ST � @kE

i
SS

6.3 A Priori Estimates

6.3.1 A Uniform Bound for the Particle Density

Proposition 6.5. The particle density satisfies the bound:

kf(t, ·, ·)kC1  c+ cT

Z t

0

[1 + kE(⌧, ·)kC1 + kB(⌧, ·)kC1 ] kf(⌧, ·, ·)kC1 d⌧ (6.3)

for all t 2 [0, T ].

Proof. Let D 2 {@x
j

}3j=1

and denote F = Ef (t, x) + v ⇥Bf (t, x). Then

(@t + v ·rx + F ·rp)(Df) = �DF ·rpf.

Hence

d

ds
Df(s,X(s; t, x, p), V (s; t, x, p)) = �DF ·rpf(s,X(s; t, x, p), V (s; t, x, p))

which leads to the estimate

|Df(t, x, p)|  |Df(0, X(0; t, x, p), V (0; t, x, p))|

+

Z t

0

|DF ·rpf(s,X(s; t, x, p), V (s; t, x, p))| ds.
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A similar bound can be obtained for D 2 {@p
j

}3j=1

. The assertion follows from these two

bounds.

6.3.2 A Uniform Bound for the Fields

Proposition 6.6. The fields admit the uniform bound

kE(t, ·)kC0 + kB(t, ·)kC0  cT , 8t 2 [0, T ]. (6.4)

Proof. We omit this proof which is technical (though it is at the heart of the proof). Here,

the assumption on the existence of a bound �(t) of momenta is used crucially.

6.3.3 A Uniform Bound for the Gradients of the Fields

Proposition 6.7. Let log⇤ s =

8

<

:

s s  1,

1 + ln s s � 1.
Then the gradients of the fields admit

the uniform bound

kE(t, ·)kC1 + kB(t, ·)kC1  cT



1 + log⇤
✓

sup
⌧t

kf(⌧, ·, ·)kC1

◆�

, 8t 2 [0, T ]. (6.5)

Proof. We omit this proof which is technical (though it is at the heart of the proof). Here,

the assumption on the existence of a bound �(t) of momenta is used crucially.

6.4 Defining Approximate Solutions

The construction of approximate solutions follows the same ideas as in the proof for Vlasov-

Poisson. However, now Poisson’s (elliptic) equation is replaced by Maxwell’s (hyperbolic)

equations, and hence defining the vector field is more involved.

Set

f0(t, x, p) = f
0

(x, p), E0(t, x) = E
0

(x), and B0(t, x) = B
0

(x),

and define

⇢0(t, x) =

Z

R3

f0(t, x, p) dp and j0(t, x) =

Z

R3

f0(t, x, p)v dp.

Suppose that (fN�1,EN�1,BN�1) have been defined and define fN to be the solution

to the linear transport equation
8

<

:

@tfN (t, x, p) + v ·rxfN (t, x, p) +
�

EN�1(t, x) + v ⇥BN�1(t, x)
�

·rpfN (t, x, p) = 0,

fN (0, ·, ·) = f
0

.

Hence one can write

fN (t, x, p) = f
0

(XN�1(0; t, x, p), V N�1(0; t, x, p)),

⇢N (t, x) =

Z

R3

fN (t, x, p) dp and jN (t, x) =

Z

R3

fN (t, x, p)v dp,

and we can define EN and BN to be the solutions of

�⇤EN = (@2

t ��x)E
N = �rx⇢

N � @tj
N ,

�⇤BN = (@2

t ��x)B
N = rx ⇥ jN .

with initial data (E
0

,E
1

) and (B
0

,B
1

), respectively.
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Goal: show that under the assumption that an upper bound �(t) to momenta ex-

ists limN!1 fN exists in C1([0, T )⇥R6), limN!1(EN ,BN ) exists in C1([0, T )⇥
R3), that the limits satisfy the relativistic Vlasov-Maxwell system (uniquely).

6.4.1 The Iterates are Well-Defined

Lemma 6.8. If fN 2 C2([0, T )⇥ R6) then EN ,BN 2 C2([0, T )⇥ R3).

Proof. Recall that EN and BN satisfy the wave equations

�⇤EN = �rx⇢
N � @tj

N ,

�⇤BN = rx ⇥ jN .

If fN 2 C2 then the right hand sides of these equations are in C1 and hence so are the

fields. To show that they are in fact C2 we need to employ the representation results and

proceed by induction. Recall that

EN (t, x) = E
0

(t, x)+EN
T (t, x)+EN

S (t, x) and BN (t, x) = B
0

(t, x)+BN
T (t, x)+BN

S (t, x).

The data terms E
0

(t, x) and B
0

(t, x) are C2, so we only need to analyse the other terms.

Take for instance the expression

EN
S (t, x) = �

Z

|y�x|t

Z

R3

! + v

1 + v · ! (SfN )(t� |y � x|, y, p) dp dy

|y � x| .

Notice that

SfN = �rp ·
⇥

(EN�1 + v ⇥BN�1)fN
⇤

which allows us to integrate by parts in p and use the induction hypothesis that EN�1 and

BN�1 are C2. A similar argument can be employed for EN
T (t, x). Hence EN is C2 and the

same holds for BN .

6.4.2 The Limit limN!1(fN ,EN ,BN ) and its Properties

From the bounds on the fields and their gradients, (6.4) and (6.5) respectively, uniform

bounds for the iterates follow. Similarly, we obtain uniform bounds for the particle density.

Together with compactness, this shows that the sequences admit limits. However some of

the elements of this proof are also lengthy and omitted here.

6.5 Uniqueness

For uniqueness we only require the expressions obtained in Proposition 6.3. This is also

omitted here.
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