
4 The Vlasov-Poisson System: Global Existence and

Uniqueness

In this section we plan to show that the local existence result – Theorem 3.2 – can in fact

be extended indefinitely, that is the maximal time of existence is T = +1. In the proof of

the local result, we saw that the fields and their derivatives were all bounded by powers of

the crucial quantity P (t) – the momentum of the “fastest” particle at time t. Hence, as long

as this quantity can be controlled, the solution can be continued. Previously, the optimal

estimate on P (t) we could obtain was related to the maximal solution of

P (t) = P
0

+ C(f0)

Z t

0

P 2(s) ds,

that is:

P (t) =
P
0

1� P
0

C(f0)t
and � =

1

P
0

C(f0)
.

Improving this bound shall require some more a priori estimates.

4.1 A Priori Estimates

In Section 3.2 we obtained some preliminary basic a priori estimates for the Vlasov-Poisson

system

@f

@t
(t, x, p) + p ·rxf(t, x, p)� �r�f (t, x) ·rpf(t, x, p) = 0, (4.1)

���f (t, x) = ⇢f (t, x) =

Z

R3

f(t, x, p) dp, lim
|x|!1

�f (t, x) = 0. (4.2)

with initial data

f(0, ·, ·) = f
0

2 C1

0

(R6),

where � = ±1 di↵erentiates between repulsive (+1) and attractive (�1) dynamics. Let us

recall these basic estimates. First, we identified the conservation of all Lp norms, p 2 [1,1]:

kf(t, ·, ·)kp = kf
0

kp

as long as the solution exists. Then we recalled estimates related to the solution of Poisson’s

equation ��� = ⇢ in R3: For any p 2 [1, 3)

kr�⇢k1  cpk⇢kp/3p k⇢k1�p/3
1 (cp only depends on p),

and for any p 2 [1, 3), R > 0 and d 2 (0, R], 9c > 0 independent of ⇢, R, d, s.t.

kD2�⇢k1  c

✓

k⇢k
1

R3

+ dkr⇢k1 + (1 + ln(R/d))k⇢k1
◆

,

kD2�⇢k1  c(1 + k⇢k1)(1 + ln
+

kr⇢k1) + ck⇢k
1

.

These estimates are insu�cient if one wants to bound momenta. For that we need to

use the conservative nature of the Vlasov-Poisson system. More precisely, in what follows

not only will we show that one can define an energy and that it is conserved, we will also

show that we can bound the kinetic energy.
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Lemma 4.1 (Continuity Equation). Let T > 0 be the time of local existence of a

solution f to the Vlasov-Poisson system (as given in Theorem 3.2). Let t 2 [0, T ) and

define the (vector-valued) flux:

jf (t, x) =

Z

R3

pf(t, x, p) dp.

Then the following (continuity) equation holds for every x 2 R3:

@t⇢f +rx · jf = 0. (4.3)

Proof. Integrate the Vlasov equation in p and eliminate the last term due to the divergence

theorem.

Definition 4.2 (Energy). For a solution f(t, x, p) of the Vlasov-Poisson system we define

its kinetic energy

Ekin(t) :=
ZZ

R3⇥R3

1

2
|p|2f(t, x, p) dx dp,

its potential energy

Epot(t) :=
�

2

Z

R3

|r�f (t, x)|2 dx =
�

2

Z

R3

⇢f (t, x)�f (t, x) dx

and total energy

E(t) := Ekin(t) + Epot(t).

Remark 4.3 (Attractive vs Repulsive Dynamics). Notice that the kinetic energy is

a positive. However, the potential energy is only positive in the repulsive (plasma) regime;

in the attractive (galactic) regime, the potential energy is negative. Hence in the repulsive

case

E(t) = Ekin(t) + Epot(t), Ekin(t), Epot(t) � 0,

since � = +1, and in the attractive case

E(t) = Ekin(t)� |Epot(t)|, Ekin(t) � 0, Epot(t)  0,

since � = �1. Assuming for the moment that the total energy is conserved (we will show

this later), we immediately obtain a uniform bound for the potential and kinetic energies

in the repulsive case. However, in the attractive case there’s no a priori reason why both

energies cannot blow up, while their sum remains constant. We will show that this does not

happen.

Proposition 4.4 (Conservation of Total Energy). The total energy E(t) is conserved.

Proof. Multiply the Vlasov equation by |p|2
2

and integrate in (x, p) to obtain

0 =

ZZ

R6

|p|2

2
@tf(t, x, p) +

ZZ

R6

|p|2

2
p ·rxf(t, x, p)� �

ZZ

R6

|p|2

2
rx�f (t, x) ·rpf(t, x, p)

= Ėkin(t) +
ZZ

R6

rx · |p|
2

2
pf(t, x, p) + �

ZZ

R6

rx�f (t, x) · pf(t, x, p)

= Ėkin(t) + 0� �

Z

R3

�f (t, x)rx · jf (t, x)

= Ėkin(t) + �

Z

R3

�f (t, x)@t⇢f (t, x)

= Ėkin(t) +
�

2

d

dt

Z

R3

�f (t, x)⇢f (t, x) = Ėkin(t) + Ėpot(t) = Ė(t).
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We used the continuity equation going from the second to the third line (exercise: verify the

transition from the fourth to the fifth line)

Proposition 4.5 (Bounds on the Energy). Let f(t, x, p) be a classical solution of

Vlasov-Poisson on [0, T ). Then for all t 2 [0, T ):

Ekin(t), |Epot(t)|, k⇢f (t, ·)kL5/3
(R3

)

 C

where C = C(kf
0

k1, kf
0

k
1

, Ekin(0)).

Proving Proposition 4.5 will require the following lemma (which we prove later):

Lemma 4.6 (Moment Estimates). Let g = g(x, p) : R6 ! R
+

be measurable and define

mk(g)(x) :=

Z

R3

|p|kg(x, p) dp

Mk(g) :=

ZZ

R3⇥R3

|p|kg(x, p) dp dx

Let p, p⇤ 2 [1,1] satisfy 1

p + 1

p⇤ = 1, let 0  k0  k < 1 and define

r =
k + 3/p⇤

k0 + 3/p⇤ + (k � k0)/p
.

Then

kmk0(g)kr  ckgk
k�k

0
k+3/p⇤
p Mk(g)

k

0+3/p⇤
k+3/p⇤

whenever the above quantities are finite, and c = c(k, k0, p) > 0.

Proof of Proposition 4.5. Due to the conservation of total energy, the bounds on Ekin(t)
and Epot(t) in the repulsive case (� = +1) are trivial. In the attractive case we use the

Hardy-Littlewood-Sobolev inequality and Lemma 4.6 with k = 2, k0 = 0, p = 9/7, r = 6/5

to obtain:

|Epot(t)| =
1

2

Z

R3

⇢f (t, x)�f (t, x) dx

=
1

2

ZZ

R3⇥R3

⇢f (t, x)⇢f (t, y)

|x� y| dy dx

 ck⇢f (t, ·)k2
6/5

 ckf(t, ·, ·)k3/2
9/7E

1/2
kin (t).

Now we use the conservation of energy to bound Ekin(t):

const = E(t) = Ekin(t) + Epot(t)

� Ekin(t)� ckf(t, ·, ·)k3/2
9/7E

1/2
kin (t)

and since ckf(t, ·, ·)k3/2
9/7 is some constant, the desired bound is achieved. For the bound on

⇢, we use Lemma 4.6 with k = 2, k0 = 0, p = 1, r = 5/3 to obtain:

k⇢f (t, ·)k
5/3  ckf(t, ·, ·)k2/51 E3/5

kin (t).

Proof of Lemma 4.6. This will be included in these notes in the future. For now, this is left

as an exercise (you can also find the proof in textbooks).
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4.2 Remarks on Global Existence

Let us see if we can improve the Gronwall inequality stemming from the equation

P (t) = P (0) + C(f0)

Z t

0

P 2(s) ds.

We know that kr�fk1  cpk⇢fkp/3p k⇢fk1�p/3
1 , and so with p = 5/3 we obtain

kr�fk1  c k⇢fk5/9
5/3

| {z }

const

k⇢fk4/91
| {z }

(P 3
(t))4/9

 cP 4/3(t).

Hence we obtain the improved bound

P (t) = P (0) +

Z t

0

kr�f (s, ·)k1 ds  P (0) + c

Z t

0

P 4/3(s) ds.

This is better, but not good enough: the solution to this equation still has finite-time blowup.

The exponent 4/3 comes from the estimate kr�fk1  cpk⇢fkp/3p k⇢fk1�p/3
1 , and to lower it

to an exponent that is  1 we would need the term k⇢fk1 to appear with a power no more

than 1/3, hence p = 2. To summarise, using Lemma 4.6 we have

kr�fk1  ck⇢fk2/3
2

k⇢fk1/31

 ck⇢fk2/3
2

P (t)

 ckfk1/21

✓

ZZ

R3⇥R3

|p|3f(t, x, p) dp dx
◆

1/2

| {z }

M
1/2
3 (f)

P (t)

which leads to:

Proposition 4.7. The breakdown criterion of Theorem 3.2 can be modified: as long as

k⇢fk2 or M
3

(f) remain bounded, the solution does not blowup.

4.3 Proof of Global Existence and Uniqueness

As of the typing of these notes there are two main approaches for proving global existence

and uniqueness of solutions. The first, which we shall pursue, involves a detailed analysis of

the trajectory of one particle thereby obtaining a priori bounds for the maximal momentum

P (t). This approach is due to Pfa↵elmoser [Pfa↵elmoser1992], later improved somewhat

by Schae↵er [Schae↵er1991] (Pfa↵elmoser’s paper took a long time to publish, and was

therefore published after Schae↵er’s paper) . The other approach, due to Lions and Perthame

[Lions1991] follows the idea of Proposition 4.7 by obtaining a priori estimates for higher

moments of f . The main di↵erence between these two approaches is in that the second

approach does not require the initial datum f0 to be compactly supported, while the first

does. This makes the second approach somewhat more physically relevant.

As we have already seen (see Proposition 3.7 for instance) momentum growth is due to

the field Ef = �r�f which is given by the relation

r�f (t, x) = �
Z

x� y

|x� y|3 ⇢f (t, y) dy = �
ZZ

x� y

|x� y|3 f(t, y, p) dp dy.

This leads to the estimate

|r�f (t, x)| 
ZZ

f(t, y, p)

|x� y|2 dp dy.
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As in Section 3 we denote T > 0 to be the maximal time of local existence and uniqueness

of the Vlasov-Poisson system, and for s, t 2 [0, T ) the characteristics of the Vlasov-Poisson

system (X(s; t, x, p), V (s; t, x, p)) are solutions to:

Ẋ(s; t, x, p) = V (s; t, x, p)

V̇ (s; t, x, p) = ��r�f (t,X(s; t, x, p))

with initial conditions

X(t; t, x, p) = x V (t; t, x, p) = p

so that

f(t, x, p) = f
0

(X(0; t, x, p), V (0; t, x, p)).

We now follow the approach of Pfa↵elmoser, and fix a characteristic ( eX(s), eV (s)) corre-

sponding to one particle (we don’t care here about dependence upon the other parameters)

with ( eX(0), eV (0)) 2 supp f
0

. We want to study the increase in momentum of this particle,

satisfying the simple estimate

|eV (t)� eV (t��)| 
Z t

t��

|r�f (s, eX(s))| ds 
Z t

t��

ZZ

f(s, y, w)

| eX(s)� y|2
dw dy ds. (4.4)

This shall be the main task in the proof of the following theorem:

Theorem 4.8 (Global Existence of Classical Solutions). Let f
0

(x, p) 2 C1

0

(R3⇥R3)

with f
0

� 0 be given. Then there exists a unique classical global solution f(t, x, p) for the

system (4.1)-(4.2) with f(0, ·, ·) = f
0

.

Proof. We first recall (see Theorem 2.4) that the mapping (X(s; t, ·, ·), V (s; t, ·, ·)) : R6 ! R6

is orientation and measure preserving. Hence letting

y = X(s; t, x, p), w = V (s; t, x, p),

x = X(t; s, y, w), p = V (t; s, y, w),

and using the fact that f is constant along characteristics, the estimate (4.4) can be rewritten

as

|eV (t)� eV (t��)| 
Z t

t��

ZZ

f(t, x, p)

| eX(s)�X(s; t, x, p)|2
dp dx ds. (4.5)

The goal in this proof will be to estimate this integral. We shall break up the domain of

integration into three parts, the good, the bad and the ugly. Fix some parameters (to be

made precise later) q, r > 0 and define:

Mg :=

(

(s, x, p) 2 [t��, t]⇥ R6 : |p|  q _ |p� eV (t)|  q

)

Mb :=

(

(s, x, p) 2 [t��, t]⇥ R6 : |p| > q ^ |p� eV (t)| > q ^

^
h

|X(s; t, x, p)� eX(s)|  r|p|�3 _ |X(s; t, x, p)� eX(s)|  r|p� eV (t)|�3

i

)

Mu :=

(

(s, x, p) 2 [t��, t]⇥ R6 : |p| > q ^ |p� eV (t)| > q ^

^ |X(s; t, x, p)� eX(s)| > r|p|�3 ^ |X(s; t, x, p)� eX(s)| > r|p� eV (t)|�3

)

.
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The good set is the set on which either momenta are small, or momenta relative to the

chosen particle are small.

The bad set is the set on which both the momenta and relative momenta are large, but

the positions are close to the chosen particle.

The ugly set is the set on which momenta and relative momenta are large, and particles

are far away from the chosen particle.

To proceed, we first redefine P (t) (the maximal momentum at time t, originally defined

in (3.9)) so that it is a monotonically increasing function:

P (t) := sup
(x,p)2supp f(s,·,·)

s2[0,t]

|p|. (4.6)

Choice of �. We choose � to be su�ciently small so that momenta don’t change too much

between t�� and t. Recalling the estimate kr�f (t, ·)k1  cP 4/3(t), we define

� := min

⇢

t,
q

4cP 4/3(t)

�

(4.7)

so that for all s 2 [t��, t], (x, p) 2 R6,

|V (s; t, x, p)� p|  �cP 4/3(t)  1

4
q. (4.8)

The Good Set. We will show that
ZZZ

M
g

f(t, x, p)

| eX(s)�X(s; t, x, p)|2
dp dx ds  cq4/3�. (4.9)

The Bad Set. We will show that
ZZZ

M
b

f(t, x, p)

| eX(s)�X(s; t, x, p)|2
dp dx ds  cr ln

✓

4P (t)

q

◆

�. (4.10)

The Ugly Set. We will show that
ZZZ

M
u

f(t, x, p)

| eX(s)�X(s; t, x, p)|2
dp dx ds  c

r
. (4.11)

Estimating the Integral. Before proceeding to prove (4.9),(4.10) and (4.11) we first add

these estimates up to see what we get. They give:

|eV (t)� eV (t��)|  c

✓

q4/3 + r ln

✓

4P (t)

q

◆

+
1

r�

◆

�

 c

✓

q4/3 + r ln

✓

4P (t)

q

◆

+
1

r
max

⇢

1

t
,
4cP 4/3(t)

q

�◆

�.

Now we want to optimise the choice of q and r. Without loss of generality, there exists t

for which P (t) > 1 (otherwise we replace P (t) by P (t) + 1). Recall also that P (t) is now

defined to be monotonically increasing. Hence, defining

q = P 4/11(t) r = P 16/33(t),

we have that q  P (t). Moreover, if the maximal time of existence T < 1, then we know that

P (t) " 1 as T " 1. Hence there exists T ⇤ 2 (0, T ) such that 1

t  4cP 4/3
(t)

q = 4cP 32/33(t)

for all t 2 [T ⇤, T ). Therefore, for all t 2 [T ⇤, T )

|eV (t)� eV (t��)|  cP 16/33(t) lnP (t)�
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so that for any " > 0 there exists some c = c(") > 0 such that

|eV (t)� eV (t��)|  cP 16/33+"(t)�. (4.12)

Now, notice that �(t) is monotonically decreasing on (T ⇤, T ). Fix some t 2 (T ⇤, T ), and

define

t
0

= t

ti+1

= ti ��(ti).

Since �(t) is monotonically decreasing, there exists some k such that

tk < T ⇤  tk�1

< tk�2

< · · · < t
1

< t
0

= t.

Hence from (4.12) we get

|eV (t)� eV (tk)| 
k

X

i=1

|eV (ti�1

)� eV (ti)|

 cP 16/33+"(t)
k

X

i=1

(ti�1

� ti)

 cP 16/33+"(t)t.

However this implies (due to the very definition of P (t)) that P (t)  P (tk) + cP 16/33+"(t)t

so that for any � > 0 there exists some c = c(�) > 0 such that

P (t)  c(1 + t)33/17+�, 8t 2 [0, T )

which implies that T = 1 (see Theorem 3.2) and finishes the proof. Hence we are only left

with verifying the estimates (4.9),(4.10) and (4.11).

The Good: Proof of (4.9). We want to show that on the good set, the following holds:
ZZZ

M
g

f(t, x, p)

| eX(s)�X(s; t, x, p)|2
dp dx ds  cq4/3�.

Recall (4.8): |V (s; t, x, p) � p|  1

4

q. Then if (s, x, p) 2 Mg, in the original coordinates

(s, y, w) the following holds:

|w| < 2q _ |w � eV (s)| < 2q.

Hence we get
ZZZ

M
g

f(t, x, p)

| eX(s)�X(s; t, x, p)|2
dp dx ds


Z t

t��

Z

R3

Z

|w|<2q _ |w�eV (s)|<2q

f(s, y, w)

| eX(s)� y|2
dw dy ds

=

Z t

t��

Z

R3

⇢̃(s, y)

| eX(s)� y|2
dy ds

"

where ⇢̃(s, y) :=

Z

|w|<2q _ |w�eV (s)|<2q

f(s, y, w) dw

#

 c

Z t

t��

k⇢̃(s, ·)k5/9
5/3

| {z }

const

k⇢̃(s, ·)k4/91
| {z }

(cq3)4/9

ds [by Propositions 3.7 and 4.5]

 cq4/3�.
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The Bad: Proof of (4.10). We want to show that on the bad set, the following holds:
ZZZ

M
b

f(t, x, p)

| eX(s)�X(s; t, x, p)|2
dp dx ds  cr ln

✓

4P (t)

q

◆

�.

Recall again (4.8): |V (s; t, x, p) � p|  1

4

q. If (s, x, p) 2 Mb, in the original coordinates

(s, y, w) the following holds:

1

2
q < |w| < 2|p| ^ 1

2
q < |w � eV (s)| < 2|p� eV (t)|^

^
h

|y � eX(s)|  8r|w|�3 _ |y � eX(s)|  8r|w � eV (s)|�3

i

.

Now, we also use the fact that for s 2 [0, t] and w 2 supp f(s, y, ·) it holds that |w|  P (t),

|w � eV (s)|  2P (t). Using also the conservation of L1 norms, we estimate
ZZZ

M
b

f(t, x, p)

| eX(s)�X(s; t, x, p)|2
dp dx ds


Z t

t��

Z

1
2 q<|w|<2P (t)

Z

|y� eX(s)|<8r|w|�3

f(s, y, w)

| eX(s)� y|2
dy dw ds

+

Z t

t��

Z

1
2 q<|w�eV (s)|<2P (t)

Z

|y� eX(s)|<8r|w�eV (s)|�3

f(s, y, w)

| eX(s)� y|2
dy dw ds

 c

Z t

t��

Z

1
2 q<|w|<2P (t)

4⇡ · 8r|w|�3 dw ds

+ c

Z t

t��

Z

1
2 q<|w�eV (s)|<2P (t)

4⇡ · 8r|w � eV (s)|�3 dw ds

 cr ln

✓

4P (t)

q

◆

�

where we have integrated in y and in w by changing to spherical coordinates.

The Ugly: Proof of (4.11). In estimating the integral over the ugly set we shall, for the

first time, use some smoothing properties of the time integral, rather than simply estimate

it by �. Recall, that we want to show that
ZZZ

M
u

f(t, x, p)

| eX(s)�X(s; t, x, p)|2
dp dx ds  c

r

where Mu is defined as

Mu :=

(

(s, x, p) 2 [t��, t]⇥ R6 : |p| > q ^ |p� eV (t)| > q ^

^ |X(s; t, x, p)� eX(s)| > r|p|�3 ^ |X(s; t, x, p)� eX(s)| > r|p� eV (t)|�3

)

.

First, we want a lower bound for the distance between the particles, which we denote, for

s 2 [t��, t],

D(s) := X(s; t, x, p)� eX(s).

Note that D : [t��, t] ! R3. We claim that for all s 2 [t��, t] and (x, p) 2 R3 ⇥R3 with

|p� eV (t)| > q the following lower bound holds:

|D(s)| � 1

4
|p� eV (t)||s� s

0

|. (4.13)
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We prove this by comparing to a linear approximation, defined as follows. Let s
0

2 [t��, t]

be such that |D(s)| attains a minimum there and let

D(s) := D(s
0

) + Ḋ(s
0

)(s� s
0

)

be the tangent (i.e. linear approximation) to D(s) at s
0

. Hence D and D and their first

derivatives agree at s
0

. As for the second derivative, we have

|D̈(s)� D̈(s)| = |V̇ (s; t, x, p)� ėV (s)|  2kr�f (s, ·)k1  cP 4/3(t).

Therefore, a simple Taylor expansion gives

|D(s)�D(s)|  cP 4/3(t)(s� s
0

)2

 cP 4/3(t)�|s� s
0

|

 1

4
q|s� s

0

|

<
1

4
|p� eV (t)||s� s

0

|. (4.14)

Next, let us show that

|D(s)|2 � 1

4
|p� eV (t)|2|s� s

0

|2. (4.15)

Indeed, observe that

|p� eV (t)|  |p� V (s
0

; t, x, p)|+ |eV (s
0

)� eV (t)|+ |V (s
0

; t, x, p)� eV (s
0

)|

 1

2
q + |V (s

0

; t, x, p)� eV (s
0

)|

so that

|Ḋ(s
0

)| = |V (s
0

; t, x, p)� eV (s
0

)| � |p� eV (t)|� 1

2
q >

1

2
|p� eV (t)|.

By the definition of s
0

we have that (s� s
0

)D(s
0

) · Ḋ(s
0

) � 0 for all s 2 [t��, t], which is

enough to prove (4.15). Combining (4.14) and (4.15) we have (4.13).

Now define functions �i : R+

! R
+

, i = 1, 2, as

�
1

(⇠) :=

8

<

:

⇠�2 ⇠ > r|p|�3

(r|p|�3)�2 ⇠  r|p|�3

�
2

(⇠) :=

8

<

:

⇠�2 ⇠ > r|p� eV (t)|�3

(r|p� eV (t)|�3)�2 ⇠  r|p� eV (t)|�3.

Using (4.13), the definition of Mu and the fact that both �i are monotonically decreasing,

we have the estimate (here U denoted the characteristic function of the set U)

M
u

(s, x, p)

|D(s)|2  �i(|D(s)|)  �i

✓

1

4
|p� eV (t)||s� s

0

|
◆

for i = 1, 2 and s 2 [t � �, t]. This allows us to estimate the integral over Mu by first

integrating in time:
Z t

t��

M
u

(s, x, p)

|D(s)|2 ds  8|p� eV (t)|�1

Z 1

0

�i(⇠) d⇠

= 16|p� eV (t)|�1

8

<

:

r�1|p|3 i = 1

r�1|p� |eV (t)|3 i = 2
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which in turn implies (by taking the minimum of the right hand side)

Z t

t��

M
u

(s, x, p)

|D(s)|2 ds  16r�1|p|2.

Therefore we are finally left with

ZZZ

M
u

f(t, x, p)

| eX(s)�X(s; t, x, p)|2
dp dx ds 

ZZ

R6

f(t, x, p)

Z t

t��

M
u

(s, x, p)

|D(s)|2 ds dx dp

 c

r

ZZ

R6

|p|2f(t, x, p) dx dp

 c

r

since the kinetic energy is bounded. This concludes the proof.

41


	ODEs and Connections to Evolution Equations
	Existence of Solutions
	Uniqueness of Solutions
	Duhamel's Principle
	Continuity Arguments

	PDEs and Kinetic Theory
	Introduction to Kinetic Theory
	Linear Transport Equations: The Method of Characteristics
	The Fourier Transform
	Sobolev Spaces

	The Vlasov-Poisson System: Local Existence and Uniqueness
	Classical Solutions to Vlasov-Poisson: A Rigorous Definition
	A Priori Estimates
	Sketch of Proof of Local Existence and Uniqueness
	Detailed Proof of Local Existence and Uniqueness

	The Vlasov-Poisson System: Global Existence and Uniqueness
	A Priori Estimates
	Remarks on Global Existence
	Proof of Global Existence and Uniqueness

	Linear Wave Equations
	Physical Space Formulas
	Fourier Space Formulas
	Duhamel's Principle
	The Energy Identity
	Dispersion of Free Waves

	The Vlasov-Maxwell System: Conditional Global Existence
	The Glassey-Strauss Theorem
	A New Basis in Spacetime
	A Priori Estimates
	Defining Approximate Solutions
	Uniqueness

	Nonlinear Wave Equations: Classical Existence and Uniqueness
	Nonlinear Wave Equations: The Vector Field Method, Global and Long-time Existence

