
3 The Vlasov-Poisson System: Local Existence and Unique-

ness

In this section we demonstrate local existence of classical solutions to the Vlasov-Poisson

system of equations. This will involve obtaining some a priori estimates and an iteration

scheme. A priori estimates are an essential tool in the analysis of PDEs, and in particular

for establishing existence of solutions. We follow [Rein2007].

3.1 Classical Solutions to Vlasov-Poisson: A Rigorous Definition

We start by precisely stating the meaning of a classical solution.17 We recall that the

Vlasov-Poisson system is the following system of equations for the unknown f(t, x, p) :

R
+

⇥ R3 ⇥ R3 ! R
+

:

@f

@t
(t, x, p) + p ·rxf(t, x, p) + �Ef (t, x) ·rpf(t, x, p) = 0, (3.1)

r ·Ef (t, x) = ⇢f (t, x) =

Z

R3

f(t, x, p) dp, (3.2)

where � = +1 for plasma problems and � = �1 for galactic dynamics. We indicate quantities

that depend upon f by a corresponding subscript. Alternatively, one could write this system

with the field replaced by its potential. Since the potential is only determined up to a

constant, one imposes an additional restriction (for instance decay at 1):

@f

@t
(t, x, p) + p ·rxf(t, x, p)� �r�f (t, x) ·rpf(t, x, p) = 0, (3.3)

���f (t, x) = ⇢f (t, x) =

Z

R3

f(t, x, p) dp, lim
|x|!1

�f (t, x) = 0. (3.4)

Definition 3.1 (Classical Solution). A function f : I ⇥ R3 ⇥ R3 ! R
+

is a classical

solution of the Vlasov-Poisson system on the interval I ⇢ R if:

• f 2 C1(I ⇥ R3 ⇥ R3)

• ⇢f and �f are well-defined, and belong to C1(I ⇥R3). Moreover, �f is twice continu-

ously di↵erentiable with respect to x.

• For every compact subinterval J ⇢ I, Ef = �r�f is bounded on J ⇥ R3.

Finally, obviously one requires that f satisfy (3.3) and (3.4) on I⇥R3⇥R3 and correspond-

ingly that ⇢f and �f satisfy (3.3) and (3.4) on I ⇥ R3.

Theorem 3.2 (Local Existence of Classical Solutions). Let f
0

(x, p) 2 C1

0

(R3 ⇥ R3)

with f
0

� 0 be given. Then there exists a unique classical solution f(t, x, p) for the system

(3.3)-(3.4) on some interval [0, T ) with T > 0 and f(0, ·, ·) = f
0

.

Furthermore, for all t 2 [0, T ) the function f(t, ·, ·) is compactly supported and non-

negative.

Finally, we have the following breakdown criterion: if T > 0 is chosen to be maximal,

and if

sup
(x,p)2supp f(t,·,·)

t2[0,T )

|p| < 1

17We shall specialise to the three dimensional classical case.
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or

sup
x2R3

t2[0,T )

⇢f (t, x) < 1

then the solution is global (T = 1).

Remark 3.3. The last part tells us how breakdown of solutions occurs: both momenta

and the particle density must become unbounded. To show global existence (later in the

course) one would have to establish a priori bounds on these quantities.

Remark 3.4. The assumption that f
0

is compactly supported can be relaxed, to include

initial data that decays “su�ciently fast” at infinity (this was done, e.g. by [Horst1981]).

3.2 A Priori Estimates

3.2.1 The Free Transport Equation

We start with the basic free transport equation which models the force-free transport of

particles in the classical case. Letting f = f(t, x, p) with t � 0, (x, p) 2 Rn ⇥Rn and p = ẋ,

the initial value problem is

@tf + p ·rxf = 0, f(0, ·, ·) = f
0

. (3.5)

We already know that there exists a unique solution for this problem on [0,1) (in fact

on (�1,1)). Moreover, in this simple case the solution can be written explicitly (the

characteristics are trivially (Ẋ, V̇ ) = (V, 0))18

f(t, x, p) = f
0

(x� pt, p)

and models particles that move freely (and therefore linearly) without any forces whatsoever

acting on them.

Proposition 3.5 (Dispersion). Let f be the solution to (3.5) and assume that f
0

2
L1(Rn ⇥ Rn) \ L1(Rn ⇥ Rn). Then:19

ess supx2Rn

Z

Rn

|f(t, x, p)| dp  1

tn

Z

Rn

ess supq2Rn

|f
0

(y, q)| dy.

In the kinetic case where f � 0 the density ⇢f =
R

f dp decays:

k⇢f (t, ·)k1  c

tn
.

3.2.2 The Linear Transport Equation

Now let us consider the linear transport equation
8

<

:

@tu(t, y) + w(t, y) ·ryu(t, y) = 0, y 2 Rn, t 2 (0, T )

u(0, y) = u
0

(y)
(3.6)

where w(t, y) : [0, T ]⇥ Rn ! Rn is given and satisfies, as before,

18We use V for the momentum variable characteristic since P will be used later for a di↵erent purpose.
19For brevity, this is often written as: kf(t, ·, ·)k

L

1
x

(L1
p

)  t�nkf0k
L

1
x

(L1
p

)

24



(H1) : w 2 C([0, T ]⇥ Rn;Rn) and Dyw 2 C([0, T ]⇥ Rn;Mn(Rn)).

(H2) : 9c > 0 such that |w(t, y)|  c(1 + |y|) for all (t, y) 2 [0, T ]⇥ Rn.

Comparing with Vlasov-Poisson, we have:

y = (x, p) 2 R6, w(t, y) = (p, �E) , ry = r
(x,p),

so that w ·ry = p ·rx + �E ·rp. Of course, the Vlasov-Poisson system is nonlinear (and

non-local20) since the force depends on f itself. However, it is a common strategy to “forget”

this, and imagine that the force is given (then, for instance, a priori estimates for the linear

transport equation such as Theorem 3.6 below can be used for Vlasov-Poisson). Notice that

in any case, the Vlasov flow is divergence-free:

ry · w = rx · p+ �rp ·E = 0. (3.7)

Theorem 3.6 (Properties of the Linear Transport Equation). Assume that w(t, y)

satisfies (H1) and (H2) and that ry ·w = 0. Let u
0

2 C1

0

(Rn). Then the solution u to (3.6)

satisfies:

1. u(t, ·) is compactly supported.

2. If u
0

� 0 then u(t, ·) � 0.

3. For all p 2 [1,1], ku(t, ·)kLp

(Rn

)

= ku
0

kLp

(Rn

)

.21

4. For any � 2 C1(R;R) with �(0) = 0 we have
Z

Rn

�(u(t, y)) dy =

Z

Rn

�(u
0

(y)) dy, 8t 2 [0, T ]. (3.8)

Proof. The first property was already proven in Theorem 2.5, and the second property is an

easy consequence of the representation (2.9) of the solution to the linear transport equation

using the characteristics. Let us prove (3.8) first (note that this resembles (2.8)). Notice that

if u solves the transport equation then so does �(u). This is easily verified by an application

of the chain rule. Hence �(u) satisfies the transport equation with initial condition �(u
0

).

Integrating the transport equation in y we get:

0 =

Z

Rn

(@t�(u(t, y)) + w(t, y) ·r�(u(t, y))) dy

=

Z

Rn

@t�(u(t, y))dy +

Z

Rn

w(t, y) ·r�(u(t, y)) dy

= @t

✓

Z

Rn

�(u(t, y))dy

◆

+

Z

Rn

r · (w(t, y)�(u(t, y))) dy

= @t

✓

Z

Rn

�(u(t, y)) dy

◆

,

where in the third equality we used the fact that r · w = 0. This proves Part 4. By letting

�(u) = |u|p for p 2 (1,1), this also proves conservation of these Lp norms. Note that for

p = 1 this won’t work, as �(u) = |u| isn’t C1. However, in this case we can prove for a

smoothed version of �(u) = |u| (i.e. we smooth the singularity at 0) and let the smoothing

parameter tend to 0. The details are omitted here.

The fact that the L1 norm is conserved is evident from the representation (2.9) and

since u
0

2 C1. If u is less smooth then in general the L1 norm may decrease.
20This means that the evolution depends on the system as a whole.
21One can also consider less smooth initial data in which case this is only true for p 2 [1,1), and for

p = 1 one has ku(t, ·)k
L

1(Rn)  ku0k
L

1(Rn).
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3.2.3 Poisson’s Equation

Due to the nature of the nonlinearity in the Vlasov-Poisson system having the formr�f (t, x)·
rpf(t, x, p) we want to obtain some a priori estimates on r�f (t, x). We have the following:

Proposition 3.7 (Properties of Solutions to Poisson’s Equation). Given ⇢(x) 2
C1

0

(R3) we define

�⇢(x) :=

Z

R3

⇢(y)

|x� y|dy.

Then:

1. �⇢ is the unique solution in C2(R3) of ��� = ⇢ with lim|x|!1 �(x) = 0.22

2. The force is given by

r�⇢(x) = �
Z

x� y

|x� y|3 ⇢(y) dy

and we have the decay properties as |x| ! 1

�⇢(x) = O(|x|�1) and r�⇢(x) = O(|x|�2).

3. For any p 2 [1, 3)

kr�⇢k1  cpk⇢kp/3p k⇢k1�p/3
1 (cp only depends on p).

4. For any p 2 [1, 3), R > 0 and d 2 (0, R], 9c > 0 independent of ⇢, R, d, s.t.

kD2�⇢k1  c

✓

k⇢k
1

R3

+ dkr⇢k1 + (1 + ln(R/d))k⇢k1
◆

,

kD2�⇢k1  c(1 + k⇢k1)(1 + ln
+

kr⇢k1) + ck⇢k
1

.

3.3 Sketch of Proof of Local Existence and Uniqueness

The proof of local existence is “standard” in the sense that it follows the ideas outlined in

Section 1. However, this does not mean that the proof is easy. This result is due to [Batt1977]

and [Ukai1978]. We remind that the system we want to solve is

@tf(t, x, p) + p ·rxf(t, x, p)� �r�f (t, x) ·rpf(t, x, p) = 0,

���f (t, x) = ⇢f (t, x) =

Z

R3

f(t, x, p) dp, lim
|x|!1

�f (t, x) = 0.

with initial data

f(0, ·, ·) = f
0

2 C1

0

(R6).

The proof shall follow the following iterative scheme:

Step 0. Set f0(t, x, p) = f
0

(x, p) and define �f0(t, x).

22There should be a factor of 4⇡ in Poisson’s equation which we omit in accordance with our convention.
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Step 1. Let f1(t, x, p) be the solution to the linear transport equation

@tf
1(t, x, p) + p ·rxf

1(t, x, p)� �r�f0(t, x) ·rpf
1(t, x, p) = 0.

Define �f1(t, x) which is used to obtain f2(t, x, p).

... and so on ...

Step N. Let fN (t, x, p) be the solution to the linear transport equation

@tf
N (t, x, p) + p ·rxf

N (t, x, p)� �r�fN�1(t, x) ·rpf
N (t, x, p) = 0.

Step 1. Show that as N ! 1, fN has a C1 limit, and that this limit satisfies the Vlasov-

Poisson system on some time interval [0, T ).

Key Ingredients of the Proof. From our study of linear transport equations, we know that

the most important ingredient is estimating the vector-field. This amounts to estimating

r�f (we drop the superscript N). Define the (crucial!) quantity for t 2 [0, T ):

P (t) := sup
(x,p)2supp f(t,·,·)

|p|. (3.9)

From Theorem 3.6 we know that the norms kf(t, ·, ·)kp are constant for all p 2 [1,1]; hence

k⇢f (t, ·)k1 = sup
x2R3

Z

R3

f(t, x, p) dp  kf(t, ·, ·)k1P 3(t) = cP 3(t)

and

k⇢f (t, ·)k1 =

Z

R3

Z

R3

f(t, x, p) dp dx = c

where c is a constant that may change from line to line. Hence by Proposition 3.7

kr�f (t, ·)k1  ck⇢f (t, ·)k1/3
1

k⇢f (t, ·)k2/31  cP 2(t).

The problem therefore reduces to controlling P (t), the maximal momentum. Momentum

growth can only happen due to the forcing term in the Vlasov equation: r�f . As we have

just seen, r�f is controlled by P 2(t), and so we have a typical Gronwall inequality :

P (t)  P (0) + c

Z t

0

P 2(s) ds.

To complete the proof one would have to repeat a similar analysis for derivatives (since we

need to show convergence in the C1-norm). For those, we will show that

kr⇢f (t, ·)k1  c and kD2�f (t, ·)k1  c.

3.4 Detailed Proof of Local Existence and Uniqueness

3.4.1 Defining Approximate Solutions

We initiate the problem by iteratively defining a sequence of solutions (fN , ⇢N = ⇢f
N

,�N =

�fN

) to an approximated Vlasov-Poisson.
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Set

f0(t, x, p) = f
0

(x, p)

and define

⇢0(t, x) =

Z

R3

f0(t, x, p) dp and �0(t, x) =

Z

R3

⇢0(t, z)

|x� z| dz.

Suppose that (fN�1, ⇢N�1,�N�1) have been defined and define fN to be the solution to

the linear transport equation
8

<

:

@tfN (t, x, p) + p ·rxfN (t, x, p)� �r�N�1(t, x) ·rpfN (t, x, p) = 0,

fN (0, ·, ·) = f
0

.

Hence one can write

fN (t, x, p) = f
0

(XN�1(0; t, x, p), V N�1(0; t, x, p)),

⇢N (t, x) =

Z

R3

fN (t, x, p) dp,

�N (t, x) =

Z

R3

⇢N (t, z)

|x� z| dz.

Goal: show that 9T > 0 such that limN!1 fN exists in C1([0, T ) ⇥ R6),

limN!1(⇢N ,�N ) exists in C1([0, T ) ⇥ R3), that the limits satisfy the Vlasov-

Poisson system (uniquely), and that the continuation criterion holds.

3.4.2 The Iterates are Well-Defined

This is a simple proof by induction and is omitted here. One can show that the following

holds:

fN (t, x, p) 2 C1([0,1)⇥ R6),

⇢N (t, x) 2 C1([0,1)⇥ R3),

r�N (t, x) 2 C1([0,1)⇥ R3).

Define R
0

> 0 and P
0

> 0 to be such that

supp f0 ⇢ {|x| < R
0

} \ {|p| < P
0

}

and

P
0

(t) = P
0

PN (t) = sup
(x,p)2supp f0

(t,·,·)
s2[0,t]

|V N�1(s; 0, x, p)|
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Then the following holds:

supp fN ⇢
⇢

|x| < R
0

+

Z t

0

PN (s) ds

�

\
n

|p| < PN (t)
o

supp ⇢N ⇢
⇢

|x| < R
0

+

Z t

0

PN (s) ds

�

kfN (t)k
1

= k⇢N (t)k
1

= kf0k
1

kfN (t)k1 = kf0k1
k⇢N (t)k1  ckf0k1P 3

N (t)

kr�N (t)k1  C(f0)P 2

N (t)

where by Proposition 3.7

C(f0) = kf0k1/3
1

kf0k2/31 (3.10)

up to some multiplicative constant.

3.4.3 A Uniform Bound for the Maximal Momentum

Intuitively, we know that for each N , the particle acceleration is given by r�N (t) for which

we have the bound C(f0)P 2

N (t). This suggests that all momenta can be uniformly bounded

as follows. Let � > 0 and P : [0, �) ! (0,1) be such that P is the maximal solution of

P (t) = P
0

+ C(f0)

Z t

0

P 2(s) ds i.e. P (t) =
P
0

1� P
0

C(f0)t
and � =

1

P
0

C(f0)
.

Claim. We have the uniform bound:

PN (t)  P (t), 8N � 0, t 2 [0, �).

Assuming this for the moment, we immediately have for all N � 0 and t 2 [0, �):

k⇢N (t, ·)k1  ckf0k1P 3(t),

kr�N (t, ·)k1  C(f0)P 2(t).

Proof of claim. The claim is clearly true for N = 0. Hence we assume it is true for N and

prove for N + 1. For any 0  s  t < � and (x, p) 2 supp f0:

|V N (s; 0, x, p)|  |p|+
Z s

0

kr�N (⌧, ·)k1d⌧

 P
0

+ C(f0)

Z s

0

P 2

N (⌧) d⌧

 P
0

+ C(f0)

Z t

0

P 2(⌧) d⌧ = P (t).

3.4.4 A Uniform Bound for r⇢N and D2�N

For C1 convergence we need we need uniform convergence of derivatives of ⇢N and r�N on

subintervals of [0, �). Hence we let �
0

2 (0, �) and claim the following:

Claim. 9c = c(f0, �
0

) > 0 such that

kr⇢N (t, ·)k1 + kD2�N (t, ·)k1  c, 8t 2 [0, �
0

], N � 0.

To show this, we first claim:
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Sub-Claim 1. We can estimate

kr⇢N+1(t, ·)k1  c exp



Z t

0

kD2�N (⌧, ·)k1d⌧

�

, 0  t  �
0

.

Assuming this for the moment, we prove the claim:

Proof of Claim. Recall the estimate on kD2�N (t, ·)k1 from Proposition 3.7:

kD2�N+1(t, ·)k1  c(1 + k⇢N+1(t, ·)k1)(1 + ln
+

kr⇢N+1(t, ·)k1) + ck⇢N+1(t, ·)k
1

.

Using Sub-Claim 1 together with the estimate for k⇢N (t, ·)k1 that we obtained in the

previous step, we have:

kD2�N+1(t, ·)k1  c(1 + k⇢N+1(t, ·)k1)(1 + ln
+

kr⇢N+1(t, ·)k1) + ck⇢N+1(t, ·)k
1

 c(1 + kf0k1P 3(t))

✓

1 + ln
+

exp



Z t

0

kD2�N (⌧, ·)k1d⌧

�◆

+ c

 c

✓

1 +

Z t

0

kD2�N (⌧, ·)k1d⌧

◆

.

Hence by induction

kD2�N (t, ·)k1  cect, 8t 2 [0, �
0

], N � 0

(here we assumed that c is so large that kD2�0(t, ·)k1  c).

Now we are left with proving the sub-claim:

Proof of Sub-Claim 1. We first note that

⇢N+1(t, x) =

Z

R3

fN+1(t, x, p) dp =

Z

R3

f
0

(XN (0; t, x, p), V N (0; t, x, p)) dp.

Hence

|r⇢N+1(t, x)| 
Z

|p|P (t)

�

�rx

�

f
0

(XN (0; t, x, p), V N (0; t, x, p))
�

�

� dp

 c
�

krxX
N (0; t, ·, ·)k1 + krxV

N (0; t, ·, ·)k1
�

.

From Sub-Claim 2 below, we know that

|rxX
N (s; t, x, p)|+ |rxV

N (s; t, x, p)| 

1 +

Z t

s

�

1 + kD2�N (⌧, ·)k1
� �

|rxX
N (⌧, t, x, p)|+ |rxV

N (⌧, t, x, p)|
�

d⌧.

So Gronwall’s inequality leads to

|rxX
N (s; t, x, p)|+ |rxV

N (s; t, x, p)|  exp



Z t

0

�

1 + kD2�N (⌧, ·)k1
�

d⌧

�

which completes the proof of the sub-claim.

Sub-Claim 2. We claim that for all (x, p) 2 R6 and s, t 2 [0, �
0

],

|rxX
N (s; t, x, p)|+ |rxV

N (s; t, x, p)| 

1 +

Z t

s

�

1 + kD2�N (⌧, ·)k1
� �

|rxX
N (⌧, t, x, p)|+ |rxV

N (⌧, t, x, p)|
�

d⌧.

Proof of Sub-Claim 2. Exercise.
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3.4.5 The Sequence {fN} Has a Limit

Since fN (t, x, p) = f
0

(XN�1(0; t, x, p), V N�1(0; t, x, p)) we have

|fN+1(t, x, p)� fN (t, x, p)|

= |f
0

(XN (0; t, x, p), V N (0; t, x, p))� f
0

(XN�1(0; t, x, p), V N�1(0; t, x, p))|

 c
�

|XN (0; t, x, p)�XN�1(0; t, x, p)|+ |V N (0; t, x, p)� V N�1(0; t, x, p)|
�

.

Claim. The following estimate holds:

|XN (s; t, x, p)�XN�1(s; t, x, p)|+ |V N (s; t, x, p)� V N�1(s; t, x, p)|

 c

Z t

0

kfN (⌧, ·, ·)� fN�1(⌧, ·, ·)k1 d⌧.

Assuming this claim, we then have

kfN+1(t, ·, ·)� fN (t, ·, ·)k1  c

Z t

0

kfN (⌧, ·, ·)� fN�1(⌧, ·, ·)k1 d⌧

which yields

kfN+1(t, ·, ·)� fN (t, ·, ·)k1  ctN (N !)�1, n � 0, t 2 [0, �
0

].

Hence the sequence {fN} is uniformly Cauchy and converges uniformly on [0, �
0

] ⇥ R6 to

some function f 2 C([0, �
0

]⇥ R6).

3.4.6 Properties of the Limit

⇢N and �N also converge uniformly:

⇢N ! ⇢f , �
N ! �f , uniformly on [0, �

0

]⇥ R3.

The support of f satisfies:

supp f ⇢
⇢

|x| < R
0

+

Z t

0

P (s) ds

�

\
n

|p| < P (t)
o

.

The estimates on on Poisson’s equation (Proposition 3.7) lead to (exercise):

�f ,r�f , D
2�f 2 C([0, �

0

]⇥ R3).

This implies that

(XN , V N ) ! (X,V ) 2 C1([0, �
0

]⇥ [0, �
0

]⇥ R6;R6)

and this is the flow due to the limiting field r�f . Hence

f(t, x, p) = lim
N!1

f
0

(XN (0; t, x, p), V N (0; t, x, p)) = f
0

(X(0; t, x, p), V (0; t, x, p))

and f 2 C1([0, �
0

]⇥ R6).

3.4.7 Uniqueness

Uniqueness is a simple consequence of Gronwall’s inequality.

3.4.8 Proof of the Continuation Criterion

This is a proof by contradiction. Assume that the maximal time interval on which the

solution f can defined is [0, T ), with T < 1, but that neither supp |p| nor k⇢fk1 blowup

as t % T . Take some T
0

= T � " (" to be chosen su�ciently small) and restart the problem

from T
0

, showing that it is possible to go beyond T .
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